跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳博彥
研究生(外文):Po-yen Chen
論文名稱:微細銅導線放電結球特性與打線接合強度要因探討
論文名稱(外文):Study of EFO Characteristics and Factors Affecting Thermosonic Bond Reliability for Fine Copper Wire
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenTruan-sheng Lui
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:64
中文關鍵詞:銅線打線接合
外文關鍵詞:copper WireWire Bonding
相關次數:
  • 被引用被引用:12
  • 點閱點閱:734
  • 評分評分:
  • 下載下載:159
  • 收藏至我的研究室書目清單書目收藏:0
  相對於金線,銅線應用於打線接合上的優勢除了低成本之外,還有優良的導電性及導熱性,但是易氧化及延展性不佳的問題,限制了銅線在實際應用上的發展性。本研究的研究對象以20μm的純度4N的銅線材為主,考慮到相關文獻研究的線徑多在25μm以上,因此先將線徑25、23、20μm的深抽銅線材以相同條件線上熱處理,再進行放電結球,發現在溫度510℃、時間0.4秒的熱處理條件下,結球熱影響區的長度並不受線徑參數的影響。
  對於線徑固定為20μm的銅線材,熱處理溫度提高至610℃,時間則縮短為0.02秒;本研究將有熱處理及無熱處理的線材分別放電結球,比較熱處理及結球前後的組織及機械性質差異。整體來說,熱處理令硬線的延伸率上昇、硬度下降,組織亦從長條狀的深抽組織轉變為等軸晶的型態;放電結球在硬線及軟線的頸部均造成晶粒粗大化的現象,而硬線的熱影響區範圍明顯大於軟線;就機械性質來說,結球造成硬線的強度變差,軟線的延伸率下降,但使用610℃/0.02秒及510℃/0.4秒兩種熱處理條件的線材,結球後的的機械性質並無明顯差別。
  確認過熱處理確實能提升銅線材的延伸率後,本研究針對20μm的線上退火線材,分析其打線接合於表面濺鍍鋁膜的石英玻璃後之組織變化,發現結球內仍殘留有EFO產生的凝固柱狀晶,並且到處可發現較細小的晶粒組織;而當膜厚在76~800nm的範圍內變化時,所測得的接合拉力強度亦有變動的情形。此外,本研究發現,銅線在EFO熔融時的氧化行為,導致結球內部樹枝狀組織的出現,而可能對於接合的強度產生影響。
Traditionally, gold is the preferred material to connect IC chips to lead frames or the bond pads by a thermosonic process. The inherent properties, such as higher electrical and thermal conductivity, of copper as well as its cost effectiveness, when compared to gold, have made it a preferred alternative. But the shortcoming for copper bond arises from the stand point of oxidation and the lower ductility, which might cause poor bondability.
This thesis reports investigation of EFO (electric flame-off) characteristics of continually annealed copper wire with different diameters, it has been reported that the wire size has no effects on the properties of the HAZ (heat affected zone) when the wire diameter ranges from 20 to 25μm.
On the next part, the effects of annealing and EFO process on the 20μm copper wire have been simultaneously studied. On the whole, the annealing process improves the ductility of the wire, while EFO weakens the strength of as-drawn samples, and lowers the elongation of annealed ones. And it is worth noting that the HAZ dimensions of wires with two different annealing conditions (610℃/0.02sec and 510℃/0.4sec) are quite identical.
In this study, the 20μm-diameter copper wire are bonded to aluminum film, which has been deposited onto quartz-glass substrates, by a thermosonic process. It is discovered that the pull strength of bonded samples are varied with the film thickness, which ranges from 76 to 800nm. On the other hand, the oxidized balls are also found to form bonds with the substrates, and the structures in the balls are mainly dendrite, which could cause the lower bondability.
中文摘要..................I
英文摘要..................II
誌謝..................III
總目錄..................IV
圖目錄..................VII



第一章 前言..................1
第二章 文獻回顧..................2
2-1 打線接合技術..................2
2-2 打線接合機制與影響接合強度之參數..................3
2-3 銅銲線製程..................4
2-4 熱處理與金屬間化合物..................4
第三章 實驗方法與步驟..................11
3-1 實驗材料..................11
3-2 線上熱處理..................11
3-3 放電結球及打線接合..................12
3-4 微觀組織觀察..................12
3-5 微硬度試驗..................13
3-6 拉伸試驗..................13
3-7 接合強度測試(拉力測試)..................14
3-8 接合介面金屬間化合物(IMC)觀察..................14
第四章 實驗結果..................23
4-1 不同線徑放電結球之熱影響區觀測..................23
4-1-1 微觀組織觀察..................23
4-1-2 微硬度測試..................23
4-2 熱處理對線徑20μm之銅線材的影響..................24
4-2-1 線材微觀組織觀察..................24
4-2-2 放電結球微觀組織觀察與微硬度測試..................24
4-2-3 拉伸試驗..................25
4-3 退火線材之打線接合..................25
4-3-1 拉力測試..................25
4-3-2 界面斷裂處顯微觀察..................26
4-3-3 頸部破斷面顯微觀察..................26
4-3-4 微觀組織觀察..................26
4-3-5 熱處理與IMC觀察..................27
第五章 討論..................44
5-1 放電結球製程效應探討..................44
5-1-1 結球柱狀晶成核成長機制探討..................44
5-1-2 熱影響區對線材可靠度的影響..................44
5-2 打線接合鍵結形成機制探討..................45
5-3 影響打線接合強度要因探討..................46
5-3-1 結球組織與氧化效應..................47
5-3-2 基板鋁膜厚度效應..................48
5-4 打線接合之動態再結晶機制探討..................49
第六章 結論..................59
第七章 參考文獻..................61


圖目錄

圖2-1 利用打線接合連結導線架與IC接墊…………………………6
圖2-2 打線接合過程示意圖[3]..................7
圖2-3 球形接合[2]..................8
圖2-4 楔形接合[2]..................8
圖2-5 線徑30μm的金線於250℃下進行打線接合
    (a)下壓力0.2N, (b)下壓力1.2 N[7]..................9
圖2-6 銅線接合經不同時間熱處理之IMC與孔洞成長觀察圖..................10
圖3-1 實驗流程圖(一):
    不同線徑退火線材放電結球組織分析..................16
圖3-2 實驗流程圖(二):
    20μm線材退火前後性質差異分析
    20μm退火線材與鋁膜基板接合特性研究………………….17
圖3-3 放電結球裝置示意圖..................18
圖3-4 打線接合裝置示意圖..................19
圖3-5 接合瞬間FAB變形示意圖..................19
圖3-6 放電結球後之線材微硬度量測示意圖..................20
圖3-7 放電結球拉伸裝置示意圖..................21
圖3-8 拉力測試裝置示意圖..................22
圖4-1 線徑20μm完全再結晶線材之結球微觀組織(OM):
    (a)距結球端0~200μm, (b) 200~400μm, (c)400~600μm..................28
圖4-2 線徑23μm完全再結晶線材之結球微觀組織(OM):
    (a)距結球端0~200μm, (b) 200~400μm, (c)400~600μm..................29
圖4-3 線徑25μm完全再結晶線材之結球微觀組織(OM):
    (a)距結球端0~200μm, (b) 200~400μm, (c)400~600μm..................30
圖4-4 不同線徑完全再結晶線材之結球微硬度曲線圖..................31
圖4-5 20μm銅線材之微觀組織(OM):
    (a)深抽後, (b) 610℃線上熱處理..................32
圖4-6 線徑20μm深抽線材之結球微觀組織(OM):
    (a)距結球端0~200μm, (b) 200~400μm, (c) 400~600μm..................33
    (d) 600~800μm..................33
圖4-7 經線上熱處理20μm線材之結球微觀組織(OM):
    (a)距結球端0~160μm, (b) 160~320μm, (c)320~480μm..................34
圖4-8 20μm銅線材放電結球之微硬度示意圖:
    (a)深抽後, (b) 610℃與510℃線上熱處理後..................35
圖4-9 20μm銅線材結球前後拉伸試驗結果示意圖:
    (a)延伸率, (b) 降伏應力, (c) 抗拉強度..................36
圖4-10 610℃線上退火線材之接合SEM觀察(鋁膜厚76nm)..................37
圖4-11 打線接合拉力測試結果..................38
圖4-12 拉力試驗界面斷裂處顯微觀察(SEM):
    (a)拉力5.87g樣本之斷裂處, (b) 拉力3.86g..................38
圖4-13 拉力試驗頸部破斷面之俯視圖(SEM):
    (a)錐狀破斷, (b) 杯狀破斷..................39
圖4-14 拉力試驗頸部破斷面之側視圖(SEM):
    (a)斷裂之試樣整體, (b)(c)(d) 破斷面特寫..................40
圖4-15 打線接合橫截面金相(OM):
    (a)結球, (b) 靠近界面之局部組織..................41
圖4-16 300℃熱處理12小時之接合橫截面金相..................42
圖4-17 經300℃熱處理之接合橫截面BEI成像圖
    (a)鋁膜厚76nm/熱處理36hr, (b) 800nm/36hr..................43
    (c)76nm/72hr, (d) 800nm/72hr..................43
圖5-1 結球組織與柱狀晶成長方向示意圖..................50
圖5-2 打線接合壓力與殘銅分佈關係示意圖
    (a)變形之FAB, (b) 壓力分布, (c) 殘銅分布..................51
圖5-3 氧化後之結球打線接合組織觀察
    (a) FAB之樹枝狀晶組織(OM)..................52
    (b)靠近界面, (c) 較遠離界面之組織(SEM)..................52
圖5-4 氧化之結球與其熱影響區組織觀察(OM)
    (a) 距結球端0~200μm, (b) 200~400μm..................53
    (c) 400~600μm..................53
圖5-5 劇烈氧化之結球與其熱影響區組織觀察(OM)
    (a)距結球端0~150μm, (b) 150~300μm, (c) 300~450μm..................54
圖5-6 氧化結球之FIB影像:
    (a)經離子蝕刻後,..................55
    (b) TEM試片擷取位置示意圖..................55
圖5-7 氧化結球之TEM影像:
    (a)Cu2O分佈於純銅材內部..................56
    (b)(c) 局部影像,Cu2O呈點狀與塊狀分佈..................56
    (d) 局部影像,Cu2O呈長條狀分佈..................56
圖5-7 氧化之結球樹枝狀晶與熱傳導方向示意圖..................57
圖5-8 基板鋁膜表面形貌觀察(SEM)
    (a)膜厚76nm, (b) 膜厚800nm..................58
1.G. Herman, Wire Bonding in Microelectronics Materials, Processes, Reliability, and Yield, 2nd ed., McGraw-Hill, 1997, pp1-10.
2.S. Murali, N. Srikanth, Charles J. Vath III, “Grains, Deformation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding”, Materials Characterization, Vol. 50 (2003), pp39-50.
3.陳昭亮,張昫揚,「密集角距封裝之金線結球參數分析研究」,興大工程學刊,第十二卷,第二期(民國九十年),127-141頁。
4.陳家旭,「打線接合之實驗與有限元素研究」,國立交通大學機械工程研究所碩士論文,民國九十一年。
5.B. Langenecker, “Effects of Ultrasound on Deformation Characteristics of Metals”, IEEE Transitions of Sonics and Ultrasonics, Vol. SU-13, No. 1 (Mar. 1966), pp1-8.
6.K.C. Joshi, “The Formation of Ultrasonic Bonds Between Metals”, Welding Journal, Vol. 50 (Dec. 1971), pp840-848
7.H.A. Mohamed, J. Washburn, “Mechanism of Solid State Pressure Welding”, Welding Journal, Vol. 54 (Sep. 1975), pp302-310.
8.H. Saiki, Y. Marumo, H. Nishitake, T. Uemura, T. Yotsumoto, “Deformation Analysis of Au Wire Bonding”, Journal of Material Processing Technology, Vol. 177 (2006), pp709-712.
9.王元亭,「放電結球細微銅導線抗拉強度之韋伯解析研究」,國立成功大學材料科學與工程研究所碩士論文,民國九十四年。
10.李志中,「線上熱處理銅導線經放電結球前後之微觀組織及拉伸性質探討」,國立成功大學材料科學與工程研究所碩士論文,民國九十五年。
11.S. Murali, N. Srinkanth, C.J. Vath III, “Effect of Wire Size on The Formation of Intermetallics and Kirkendall Voids on Thermal Aging of Thermosonic Wire Bonds”, Materials Letters, Vol. 58 (2004), pp3096- 3101.
12.J.H. Westbrook, R.L. Fleischer, Intermetallic Compounds Vol.1, Wiley, 2000, pp91-125, 227-275.
13.S. Murali, N. Srikanth, C.J. Vath III, “An analysis of Intermetallics Formation of Gold and Copper Ball Bonding on Thermal Aging”, Materials Research Bulletin, Vol. 38 (2003), pp637-646.
14.C.W. Tan, D. Abdul Razak, “Mechanical and Electrical Properties of Au-Al and Cu-Al Intermetallics Layer at Wire Bonding Interface”, Journal of Electronic Packaging, Vol. 125 (Dec. 2003), pp617-620.
15.C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou, H.H. Wang, “Growth Behavior of Cu/Al Intermetallic Compounds and Cracks in Copper Ball Bonds During Isothermal Aging”, Microelectronics Reliability (in press).
16.H.J. Kim, J.Y. Lee, K.W Paik, K.W. Koh, J. Won, S. Choe, J. Lee, J.T. Moon, Y.J. Park, “Effects of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability”, IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 2 (Jun. 2003), pp367-374.
17.V.H. Winchell, H.M. Berg, “Enhancing Ultrasonic Bond Development”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. CHMT-1, no. 3 (Sep. 1978), pp211- 219.
18.J.W. Stafford, “Reliability Implications of Destructive Gold Wire Bond Pull and Ball Bond Shear Testing”, Semiconductor International, Vol. 5 (May 1983), pp92-94.
19.M.L. White, J.W. Serpiello, K.M. Stringy, W. Rosenzweig, “The Use of Silicon RTV Rubber for Alpha Particle Protection on Silicon Intergrated Circuits”, 19th Annual Proceedings of Reliability Physics, Orlando, Florida, Apr. 7-9, 1981, pp43-47.
20.F. W. Wulff, C. Breach, D. Stephan, Sarawati, K. Dittmer, “Characterisation of Intermetallic Growth in Copper and Gold Ball Bonds in Aluminum Metallisation”, Proceedings of 6th Electronics Packaging Technology Conference, EPTC2004, Singapore, Singapore, Dec. 8-10, 2005, pp348-353.
21.H.T.G. Hentzell, R.D. Thompson, K.N. Tu, “Interdiffusion in Copper-Aluminum Thin Film Bilayers. I. Structure and Kinetics of Sequential Compound Formation”, Journal of Applied Physics, Vol. 54 (1983), pp6923-6928.
22.I.M. Kohen, L.J. Huang, P.S Ayyaswamy, “Melting and Solidification of Thin Wires: A Class of Phase-Change Problems with A Mobile Interface – II. Experimental Confirmation”, International Journal of Heat and Mass Transfer”, Vol. 38, No. 9 (1995), pp1647-1659.
23.S. Murali, N. Srikanth, C.J. Vath II, “Part II: Grains, Deformation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding of 6-mil-Diameter Wire”, Materials Characterization, Vol. 54 (2005), pp93-95.
24.林宜璋,「不同退火條件之銅導線經放電結球前後之機械性質與織構分析」,國立成功大學材料科學與工程研究所碩士論文,民國九十六年。
25.Y. Zhou, X. Li, M.J. Noolu, “A Footprint Study of Bond Initiation in Gold Wire Crescent Bonding”, IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 4 (Dec. 2005), pp810-816.
26.I. Lum, J.P. Jung, Y. Zhou, “Bonding Mechanism in Ultrasonic Gold Ball Bonds on Copper Substrate”, Metallurgical and Materials Transactions A, Vol. 36A (May 2005), pp1279-1286.
27.M. Mayer, O. Paul, D. Bolliger, H. Baltes, “Integrated Temperature Microsensors for Characterization and Optimization of Thermosonic Ball Bonding Process”, IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 2 (Jun. 2000), pp393-398.
28.R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, 1994, pp424-476.
29.N.J. Noolu, I. Lum, Y. Zhou, “Roughness Enhanced Au Ball Bonding of Cu Substrate”, IEEE Transactions on Components and Packaging Technologies, Vol. 29, No. 3 (Sep. 2006), pp457-463.
30.J.E. Krzanowski, N. Murdeshwar, “Deformation and Bonding Process in Aluminum Ultrasonic Wire Wedge Bonding”, Journal of Electronic Materials, Vol. 19, No.9 (1990), pp919-928.
31.A. Manonukul, F.P.E. Dunne, “Initiation of Dynamic Recrystallization Under Inhomogeneous Stress States in Pure Copper”, Acta Materialia, Vol. 47, No. 17 (Nov. 1999), pp4339-4354.
32.G.A. Hayes, J.C. Shyne, “Ultrasonic Enhancement of Grain Growth in Copper”, The Philosophical Magazine, Vol. 17, No. 148 (1968), pp859-863.
33.G.A. Hayes, J.C. Shyne, “The Influence of Ultrasound on The Kinetics of Recrystallization in Copper”, Metal Science Journal, Vol. 5 (Jan. 1971), pp19-25.
34.U. Geiβler, M. Schneider-Ramelow, K. Lang, H. Reichl, “Investiga- tion of Microstructural Processes During Ultrasonic Wedge/ Wedge Bonding of AlSi1 Wires”, Journal of Electronic Materials, Vol. 35, No. 1 (2006), pp173-180.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top