跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳文成
研究生(外文):Wen-Cheng Chen
論文名稱:銪活化Sr2-xBaxSiO4及Sr3-xBaxSiO5螢光材料
論文名稱(外文):Eu2+-activated Sr2-xBaxSiO4 and Sr3-xBaxSiO5 phosphors
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hon
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:112
中文關鍵詞:螢光體矽酸鍶
外文關鍵詞:phosphorsprecipitation method
相關次數:
  • 被引用被引用:3
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
全球能源短缺,節能產品之開發更顯得重要,LED光源具低耗電量、壽命長、體積小等優點,其重要性不言可喻;產生白光LED之螢光材料扮演重要角色,本論文以沉澱法分別合成黃綠色及黃橘色兩種發光波段的銪活化鹼土矽酸鹽前驅物,經還原煆燒後以XRD及PL分析其結構及發光特性,利用SEM觀察其表面型態。
沉澱法製備之Sr2SiO4 : Eu2+螢光體,會隨還原煆燒溫度的增加,而使長波長與短波長發光強度之比值提升;Sr3-xSiO5 : Eux2+前驅物,於1400℃持溫8小時可得純相Sr3SiO5 : Eu2+黃色螢光體。當 Sr3-xSiO5 : Eux2+中x值為0.03時其發光強度最大,推測此時活化劑濃度達最適濃度。以Ba2+取代Sr2SiO4 : Eu2+結構中部份Sr2+,可將螢光體發光色彩由黃綠光調整至綠光,且發光強度亦隨之增加。由色度坐標分析Sr1.65Ba0.3SiO4 : Eu0.052+與藍光混光形成白光。將Sr1.65Ba0.3SiO4 : Eu0.052+添加氯化銨為助融劑進行還原煆燒,該黃綠色螢光體發光強度提升,有助於應用在白光LED之發光效率。利用Ba2+於Sr3SiO5:Eu2+取代結構中部份Sr2+的位置,造成發射光譜不規則位移,Sr3-xBaxSiO5 : Eu2+中隨x值增加,發射光譜先產生紅位移再藍位移;可將螢光體發光色彩由黃光調整至黃橘光;且隨Ba2+含量增加,螢光體之發光強度不受操作溫度影響,具有較高之熱穩定性。
The energy saving products are getting more and more important due to the shortage of energy in worldwide. The main advantages of the light emitting diodes (LED) are their low electricity consumption, long lifetime and small volume. Recently, LED such as phosphor has been found to be very useful for application of white light. In this study, the two kinds of alkaline earth orthosilicate phsphors that emit yellow-green and yellow-orange light respectively were prepared by the precipitation method and the structure and the optical properties have been investigated.
Eu2+ will replace the Sr2+ sites of Sr2SiO4:Eu2+ by precipitation method. The ratio of photoluminescent intensity of long wavelength to the short wavelength increases as the calcination temperatures (in reducing gas) are increased. Pure single phase Sr3SiO5:Eu2+ was obtained after heating the precipitated Sr3SiO5:Eu2+ precursor at 1400℃ for 8 h. The maximum photoluminescent intensity has been obtained at x value of 0.03 in Sr3-xSiO5:Eu2+. The color performance can be tuned from yellow-green to green color by adjusting the Ba2+ concentrations to substitute Sr2+ in Sr2SiO4. The additive of NH4Cl as flux can improve photoluminescent intensity of Sr1.65Ba0.3SiO4:Eu0.052+. The emission spectra show anomalous shift with substitution of Sr2+ by Ba2+ in the structure of Sr3SiO5:Eu2+. The Sr3-xBaxSiO5:Eu2+ phosphor shows red shift and then blue shift in the emission spectra with increasing x value. The color performance can be tuned from yellow to yellow-orange color by adjusting the Ba2+ concentrations to substitute Sr2+ in Sr3SiO5:Eu2+ and the thermal stability was improved with increasing concentration of Ba2+.
總目錄
摘要 Ⅰ
Abstract Ⅱ
誌謝 III
總目錄 IV
表目錄 IX
圖目錄 X

第一章 緒論....... ........................................1
1-1 前言..................................................1
1-2 白光發光二極體 ........................................2
1-3 研究動機與目的........................................6
第二章 理論基礎 ........................................7
2-1 螢光材料 ........................................7
2-2 光放射激發源種類......................................7
2-3 螢光材料發光機制分類..................................8
2-4 螢光體發光機制 .......................................10
2-4-1 發光過程 .......................................10
2-4-2 螢光與磷光 .......................................11
2-5 螢光體發光理論與影響因素.............................14
2-5-1 晶格場理論 .......................................14
2-5-1-1 靜電場作用之晶格場 ..............................14
2-5-1-2 晶格場效應 .......................................16
2-5-1-3 組態座標模型.....................................16
2-5-1-4 史托克位移 .......................................18
2-5-1-5 溫度影響波形寬化行為.............................22
2-5-2 電子雲膨脹效應.....................................23
2-5-3 濃度淬滅效應 .......................................24
2-5-4 溫度淬滅效應 .......................................24
2-6 螢光材料設計.........................................29
2-6-1 主體晶格...........................................29
2-6-2 活化劑.............................................30
2-6-3 敏化劑.............................................30
2-6-4 淬滅劑.............................................30
2-7 稀土離子之發光特性...................................35
2-7-1 f-f軌域躍遷之稀土離子 ..............................35
2-7-2 f-d軌域躍遷之稀土離子..............................36
2-8 螢光體螢光特性光譜...................................38
2-8-1吸收光譜............................................38
2-8-2 發光光譜及激發光譜.................................38
2-9 螢光體之製備技術.....................................39
2-10 Sr2SiO4及Sr3SiO5晶體結構及文獻回顧..................41
2-10-1 Sr2SiO4結構.......................................41
2-10-2 Sr3SiO5結構 .......................................42
2-10-3 Sr2SiO4 : Eu2+及Sr3SiO5 : Eu2+螢光體回顧..........42
第三章 實驗方法與步驟....................................46
3-1 實驗藥品.............................................46
3-2 實驗步驟.............................................47
3-3 分析方法與步驟.......................................50
3-3-1 X-ray晶體繞射......................................50
3-3-2 光致發光光譜 .......................................50
3-3-3 掃描式電子顯微鏡 ..................................50
3-3-4 CIE色度座標 .......................................51
3-3-5 拉曼光譜分析.......................................51
第四章結果與討論.........................................52
4-1 Sr2SiO4:Eu2+及Sr3SiO5:Eu2+ ..........................52
4-1-1 熱處理條件對於Sr2SiO4結構合成及影響................52
4-1-2 Sr2SiO4 : Eu2+螢光體之螢光特性 .....................54
4-1-3 還原煆燒溫度對於Sr2-xSiO4: Eux2+螢光體光學性質影響.58
4-1-4 還原煆燒溫度對於Sr2-xSiO4: Eux2+螢光體表面型態影響.58
4-1-5 熱處理條件對於Sr3SiO5結構合成及影響................61
4-1-6 Sr3SiO5 : Eu2+螢光體之螢光特性 .....................64
4-1-7 活化劑添加量對於Sr3-xSiO5:Eux2+螢光體之光學性質影響65
4-2 Sr2-xBaxSiO4 : Eu2+及Sr3-xBaxSiO5:Eu2+..............69
4-2-1 Sr2-xBaxSiO4 : Eu2+螢光體之製備....................69
4-2-2 Sr2-xBaxSiO4 : Eu2+(x=0~1.5)螢光體之螢光光譜分析及色彩表現...................................................69
4-2-3 Sr1.65Ba0.3SiO4 : Eu0.05黃綠色螢光體之發光強度提升及探討.....................................................75
4-2-4 以氯化銨(NH4Cl)為助融劑,對Sr1.65Ba0.3SiO4:Eu0.052+黃綠色螢光體發光強度及表面型態影響.........................78
4-2-5 Sr3-xBaxSiO5 : Eu2+之製備......................... 84
4-2-6 Sr3-xBaxSiO5 : Eu2+之螢光特性......................86
4-2-7 Sr3-xBaxSiO5 : Eu2+螢光體之CIE座標.................88
4-2-8 Sr3-xBaxSiO5 : Eu2+螢光體之SEM表面型態.............88
4-2-9 Sr3-xBaxSiO5 : Eu2+ (x=0~1.5)之熱效應..............93
4-2-9-1 溫度對於Sr3-xBaxSiO5 : Eu2+ (x=0~1.5)螢光體發光強度影響.....................................................93
4-2-9-2 Sr3-xBaxSiO5 : Eu2+ (x=0~1.5)之熱穩定性分析......93
第五章 結論.............................................103
參考文獻 ...............................................104
[1] 林志勳,“白光LED新興市場機會與材料發展趨勢”,經濟部,工研院,第四章,9 (2005)。
[2] 郭子菱、呂紹旭,“白光LED技術發展演進近況”,光連雙月刊,72期,34-37 (2007)。
[3] E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart”, Science, 308, 1274-1278 (2005).
[4] W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, 2nd Ed.,CRC press, Boca Raton, 7 (2007).
[5] 徐敘瑢、蘇勉曾,“發光學與發光材料”,化學工業出版社,543-584 (2004)。
[6] G. Sole Jose, L. B. Lopez and J. G. Daniel, An introduction to the optical spectroscopy of inorganic solids, John Wiley & Sons, 181-182, (2005).
[7] W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, 2nd Ed.,CRC press, Boca Raton, 63-64 (2007).
[8] G. Sole Jose, L. B. Lopez and J. G. Daniel, An introduction to the optical spectroscopy of inorganic solids, John Wiley & Sons, 151-173 (2005)
[9] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids, Clarendon Press, Oxford, 183-198 (1989).
[10] W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, 2nd Ed.,CRC press, Boca Raton, 168-172 (2007).
[11] 周公度,段連運著,結構化學基礎,淑馨出版社,221 (1997)。
[12] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids ,Clarendon Press, Oxford, 68-77 (1989).
[13] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids, Clarendon Press, Oxford, 200-201 (1989).
[14] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids, Clarendon Press, Oxford, 96 (1989).
[15] G. Blasse, and B. C. Grabmaier, Luminescent materials, Springer Verlag, Berlin Heidelberg, 13 (1994).
[16] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, 245 (1991).
[17] G. Blasse, and B. C. Grabmaier, Luminescent materials, Springer Verlag, Berlin Heidelberg, 15 (1994).
[18] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids, Clarendon Press, Oxford, 208 (1989).
[19] C. K. Jorgensen, “Absorption spectra and chemical bonding in complexes”, Pergamon Press, Oxford, 352 (1960).
[20] G. Sole Jose, L. B. Lopez and J. G. Daniel, An introduction to the optical spectroscopy of inorganic solids. John Wiley & Sons, 188-190 (2005)
[21] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, 290-298 (1991).
[22] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, 292 (1991).
[23] Batler, K. H. and Jerome C. W. Journal of Electrochemical Society, 97, 265 (1950).
[24] 鄭子樵、李紅英主編,稀土功能材料 稀土功能材料,曉園出版社, 173-174 (2006)。
[25] G. H. Dieke, In Spectra and energy levels of rare earth ions in crystal. Wiley Interscience, New York, 142 (1968).
[26] A. S. Marfunin, Spectroscopy, Luminescence and radiation centers in minerals, Berlin Springer-Verlag, New York. 149 (1979).
[27] J. M. Kittrick, L. E. Shea, C. F. Bacalski and E. J. Bosze, “The influence of processing parameters on luminescent oxides produced by combustion synthesis”, Displays, 19, 169–172 (1999).
[28] J. M. Fields, JR, P. S. Dear and J. J. Brown, J R, “Phase Equilibria in the System BaO-SrO-SiO2”, Journal of The American Ceramic Society , 55, 12 585-588 (1972).
[29] L. Stenberg, J. R. Sellar and B.G. Hide, “Incommensurately modulated ”, Nature, 320, 428-429 (1986).
[30] G. Pieper, W. Eysel and T. Hahn, “Solid solubility and polymorphism in the system Sr2SiO4-Sr2GeO4-Ba2GeO4-Ba2SiO4”, Journal of the American Ceramic Society, 55,619-622 (1972).
[31] M. Catti, G. Gazzoni and G. Ivaldi, “Structure of twinned β-Sr2SiO4 and -Sr1.9Ba0.1SiO4”, Acta Cryst., C39, 29-34 (1983).
[32] M. Catti, G. Gazzoni, G. Ivaldi and G. Zanini, “The Phase Transition of Sr2SiO¬. II. X-ray and optical study, and ferroelasticity of the β Form ”, Acta Cryst., B39, 674-679 (1983).
[33] R. W. Nurse, “Tristrontium silicate-A new compound”, Journal of Applied Chemistry, 2, 244-246 (1952).
[34] L. S. D. Glasser and F. P. Glasser, “Silicates M3SiO5. I. Sr3SiO5”, Acta Cryst., 18, 453-454 (1965).
[35] L. S. D. Glasser, “Silicates M3SiO5. II. Relationships between Sr3SiO5, Cd3SiO5 and Ca3SiO5”, Acta Cryst., 18, 455-457 (1965).
[36] E.Tillmanns and H. P. Grosse, “Refinement of tribarium silicate”, Acta Cryst., B34, 649-651 (1978).
[37] L. B. Thomas, “Fluorescence of Eu2+-Activated Phases in Binary Alkaline Earth Orthosilicate Systems”, J. Electrochem. Sot. : Solid State Science, 1181-1184 (1968).
[38] J. K. Park, M. A. Lim, C. H. Kim, and H. D. Park, J. T. Park and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4 : Eu and the luminescent properties”, Applied Physics Letters, 82, 5, 683-685 (2003).
[39] J. K. Park, K. J. Choi, C. H. Kim, H.D. Park and S. Y. Choib, “Optical Properties of Eu2+-Activated Sr2SiO4 Phosphor for Light-Emitting Diodes ”, Electrochemical and Solid-State Letters, 7, 5, H15-H17 (2004)
[40] J. K. Park, C. H. Kim, S. H. Park, H. D. Park and S. Y. Choi, “Application of strontium silicate yellow phosphor for white light-emitting diodes”, Applied Physics Letters ,84(10), 1647-1649 (2004).
[41] J. K. Park, K. J. Choi, J. H. Yeon, S. J. Lee and C. H. Kim, “Embodiment of the warm white-light-emitting diodes by using a Ba2+ codoped Sr3SiO5:Eu phosphor”, Applied Physics Letters. 88, 043511 (2006).
[42] J. H. Lee and Y. J. Kim, “Photoluminescent Properties of Sr2SiO4:Eu2+ Phosphors Prepared by Solid-State Reaction Method”, Materials Science and Engineering B, 146, 99–102 (2008).
[43] X.Q. Piao, T. Horikawa, H. Hanzawa and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination”, Applied Physics Letters, 88, 16, 1619081 (2006).
[44] E. D. Bacce, A. M. Pires and M. R. Davolos, “Influence of Zn co-doping ion on Eu3+ –O2- associate luminescence in Sr2SiO4”, Journal of Alloys and Compounds. 344, 312–315 (2002).
[45] S. D. Jee, J. K. Park and S. H. Lee, “Photoluminescence properties of Eu2+-activated Sr3SiO5 phosphors”, Journal of Materials Science, 41, 3139–3141 (2006).
[46] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides” , Acta Crystallogr., A32, 751-767 (1976).
[47] S. H. M. Poort, W. Janssen and G. Blasse, “Optical properties of Eu2+-activated orthosilicates and orthophosphates”, Journal of Alloys and Compounds. 260, 93-97 (1997).
[48] J. S. Kim, Y. H. Park, J. C. Choi and H. L. Park, “Optical and Structural Properties of Eu2+-doped (Sr1−xBax)2SiO4 phosphors”, Journal of The Electrochemical Society, 152, 9, H135-H137 (2005).
[49] G. Blasse, and B. C. Grabmaier, Luminescent materials, Springer Verlag, Berlin Heidelberg, 35 (1994).
[50] C. C. Chiang, M. S. Tsai, and M, H, Hon, “Preparation of Cerium-Activated GAG Phosphor Powders Influence of Co-doping on Crystallinity and Luminescent Properties ”, Journal of The Electrochemical Society, 154 , 10, J326-J329 (2007).
[51] H. S. Kang, Y. C. Kang, K. Y. Jung and S. B. Park, “Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis”, Materials Science and Engineering B, 121, 81–85 (2005).
[52] B. G. Yun, Y. Miyamoto, H. Yamamoto, “Luminescence properties of (Sr1-uBau)Si2O2N2 : Eu2+, yellow or orange phosphors for white LEDs, synthesized with (Sr1-uBau)2SiO4 : Eu2+ as a precursor”, Journal of the Electrochemical Society, 154, 10, J320-J325 (2007).
[53] J. S. Kim, P. E. Jeon, J. C. Choi and H. L. Park, “Emission color variation of M2SiO4:Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode”, Solid State Communications, 133, 187–190 (2005).
[54] R. Xiea, N. Hirosak, N. Kimura, M. Sakuma and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors”, Applied Physics Letters. 90, 191101 (2007).
[55] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, 391-395 (1991).
[56] G. Sole Jose, L. B. Lopez and J. G. Daniel, An introduction to the optical spectroscopy of inorganic solids, John Wiley & Sons, 206-212 (2005).
[57] M. Handke, “Vibration spectra, force constants, and Si-O bond character in calcium silicate crystal structure”, Applied Spectroscopy, 40, 6, 871 -877 (1986).
[58] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, 299-305 (1991).
[59] W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, 2nd Ed.,CRC press, Boca Raton, 85-86 (2007).
[60] J. H. Ryu, Y. G. Park, H. S. Won, S. H. Kim, H. Suzuki, J. M. Lee, C. Yoon, M. Nazarov, D. Y. Noh and B. Tsukerblat, “ Luminescent Properties of Ca-SiAlON:Eu2+ Phosphors Synthesized by Gas-Pressured Sintering”, Journal of The Electrochemical Society, 155 , 4, J99-J104 (2008).
[61] J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, “Temperature-Dependent Emission Spectrum of Ba3MgSi2O8:Eu2+, Mn2+ Phosphor for White-Light-Emitting Diode”, Electrochemical and Solid-State Letters, 8, 8, H65-H67 (2005).
[62] C. C. Chiang, M. S. Tsai and M. H. Hona, “ Luminescent Properties of Cerium-Activated Garnet Series Phosphor: Structure and Temperature Effects”, Journal of The Electrochemical Society, 155, 6, B517-B520 (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top