跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周彥廷
研究生(外文):Yen-tin Chou
論文名稱:以直流反應性濺鍍法製備二氧化錫薄膜摻雜鉬之結構及光電性質研究
論文名稱(外文):Study of Molybdenum Doped Tin Oxide Films on Structure and Opto-Electrical Properties by DC Reactive Sputtering
指導教授:李世欽李世欽引用關係
指導教授(外文):Shin-chin Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:134
中文關鍵詞:透明電極反應性濺鍍二氧化錫
外文關鍵詞:SnO2transparent conducting electrodesMolybdenumreactive sputtering
相關次數:
  • 被引用被引用:14
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:100
  • 收藏至我的研究室書目清單書目收藏:0
現今光電子元件的需求量逐年增加,對於透明電極的使用量隨之增加,即將遇到材料短缺及價格過高的問題。二氧化錫含量多、成本低廉且具有良好的機械耐久性及熱穩定性等優點;然而其導電性不如目前市面上商用氧化銦錫(ITO)材料。因此,許多學者投入研究,以添加適當的摻雜物來改善其導電性質。
本研究利用直流反應性濺鍍法於室溫下沉積二氧化錫薄膜於矽晶片及康寧玻璃上,藉由改變氧分率、靶材功率及沉積時間,來得到薄膜較佳之光電性質;再以不同鉬片寬度來改變鉬含量摻雜沉積於二氧化錫薄膜,進行退火處理,以得到較佳光電性質之鍍膜。鍍膜的結構主要以低掠角X光繞射儀(GIAXRD)及穿透式電子顯微鏡(TEM)觀察其顯微結構;鍍膜表面形態及粗糙度以掃描式電子顯微鏡(SEM)及原子力顯微鏡(AFM)觀察;以霍爾效應(Hall measurement)量測鍍膜的電性質;以紫外-可見光(UV-VIS)光譜儀做光學分析。
研究結果顯示,未摻雜之SnO2薄膜於室溫下,在直流功率50W、工作壓力4 mtorr、氧分率30%、鍍層厚度約300 nm時,具有較佳的光電性質,電阻率約為1.27×10-2 Ω-cm,可見光穿透率在85%左右,光學能隙值為4.2 eV,其結構為XRD非晶結構,表面粗糙度(Rrms)在1 nm以下。
而在摻雜鉬之SnO2薄膜中,於相同條件下,由於電漿不穩定,薄膜受到電弧的影響以及鉬尚未固溶於薄膜中,而為中性原子或離子散射,使得導電性質並不佳;鍍膜經過退火處理後,呈現多晶SnO2結構,然而鉬的含量會隨著退火溫度的升高揮發而減少,使得鍍膜的載子濃度無法有效地提升。鍍膜在退火溫度300℃、1小時、鉬片寬度6 mm時,具有較佳的光電性質,其電阻率約為4.59×10-2 Ω-cm,可見光穿透率在93%左右,光學能隙值則在4.09 eV左右。
Nowadays the demands of optoelectronic devices have increased year by year, whereupon the uses of transparent conducting electrodes have also increase, so the deficiency of the materials and high price will be the problems soon. SnO2 has the advantage of abundance in earth, low cost and well mechanical and thermal stability. However its conductivity is inferior to commercial indium tin oxide (ITO). As this result, many researchers have put into study to improve its conductivity by suitable additive.
In this study, SnO2 films were deposited on Si wafer and Corning glass by DC reactive sputtering at room temperature. Films with better opto-electrical properties were achieved by variation of oxygen flow ratio, sputter power and deposition time. To get better opto-electrical properties, Mo doped SnO2 films with different Mo sheet width were investigated by annealing process. Films’ structure was characterized and observed by glancing incident angle X-ray diffraction (GIAXRD) and TEM; the surface morphology and roughness were observed by SEM and AFM; the electrical property was measured by Hall measurement; and the optical properties were measured by UV-VIS spectrophotometer.
The results show that undoped SnO2 film had an electrical resistivity of 1.27×10-2 Ω-cm and an optical transmittance of 85% with an optical band gap of 4.2 eV for the sample prepared at the optimized condition (50W, 4 mtorr, and 30% O2) with a thickness of about 300 nm. The structures of as-deposited SnO2 films were XRD-amorphous, and the surface roughness (Rrms) was below 1 nm.
It was founded that under similar condition, SnO2 films doped Mo didn’t improve the conductivity which was due to plasma unstability as a result of arcing influence and Mo didn’t diffuse in the films, that formed neutral atoms or ionic scattering. After annealing, films were polycrystalline structure, however, concentration of Mo was evaporated by increasing annealing temperature, carrier concentration couldn’t be improved effectively. The film at a Mo sheet width of 6 mm showed better opto-electrical properties when annealing at 300℃ for 1 hour. The resistivity was 4.59×10-2 Ω-cm, and the optical transmittance was about 93% with an optical band gap of 4.09 eV.
總目錄
中文摘要 I
Abstract III
致謝 V
總目錄 VII
圖目錄 X
表目錄 XV
第一章 緒論 1
1 - 1 前言 1
1 - 1 - 1 透明導電膜的發展 1
1 - 1 - 2 透明導電膜的種類 2
1 - 1 - 3 透明導電薄膜的應用 3
1 - 2 研究動機與目的 6
1 - 2 - 1 薄膜的選擇 - SnO2 6
1 - 2 - 2 摻雜物的選擇 - Mo 7
1 - 2 - 3 製備SnO2薄膜方法的選擇 – 磁控濺鍍法 8
第二章 文獻回顧 9
2 - 1 二氧化錫結構與特性 9
2 - 2 氧化鉬結構與特性 12
2 - 3 磁控濺鍍法沉積二氧化錫薄膜之性質 13
2 - 4 摻雜元素對二氧化錫薄膜性質的影響 16
2 - 5 薄膜的導電機制 22
2 - 6 薄膜的光學性質 28
2 - 7 電漿理論 30
2 - 7 - 1 何謂電漿 30
2 - 7 - 2 電漿原理 30
2 - 7 - 3 直流輝光放電 34
2 - 7 - 4 反應性濺鍍 37
2 - 8 薄膜的成核、成長理論 38
第三章 實驗方法與步驟 43
3 - 1 實驗流程 43
3 - 2 實驗材料 44
3 - 3 鍍膜製程及參數設定 46
3 - 3 - 1 濺鍍系統裝置 46
3 - 3 - 2 基板清洗 49
3 - 3 - 3 參數設定及鍍膜程序 49
3 - 4 退火處理 50
3 - 5 薄膜性質量測 53
3 - 5 - 1 膜厚與濺鍍速率量測 53
3 - 5 - 2 晶體結構分析 54
3 - 5 - 3 表面形態觀察 55
3 - 5 - 4 顯微結構分析 55
3 - 5 - 5 霍爾效應電性量測 56
3 - 5 - 6 光學量測 57
3 - 5 - 7 成份及化學鍵結分析 57
第四章 結果與討論 58
4 - 1 直流磁控濺鍍法沉積SnO2薄膜 58
4 - 1 - 1 氧氬流量比對薄膜性質之影響 58
4 - 1 - 2 濺鍍功率對薄膜性質之影響 62
4 - 1 - 3 沉積時間對薄膜性質之影響 66
4 - 2 直流磁控濺鍍法沉積SnO2:Mo薄膜 83
4 - 2 - 1 鉬片寬度對SnO2:Mo薄膜性質之影響 83
4 - 2 - 2 退火溫度對SnO2:Mo薄膜結構之探討 91
4 - 2 - 3 退火溫度對SnO2:Mo薄膜電學性質之分析 99
4 - 2 - 4 退火溫度對SnO2:Mo薄膜光學性質之分析 109
第五章 結論 119
參考文獻 121
自述 134
參考文獻
1.楊明輝編著, “透明導電膜” ,藝軒圖書出版社 (2006) 8。
2.T. H. Tsai and Y. F. Wu, “Organic acid mixing to improve ITO film etching in flat panel display manufacture”, Journal of the Electrochemical Society, 153 (2006) C86-C90.
3.Hideyo Iida, Toshio Mishuku, Atsuo Ito, and Yutaka Hayashi, “The structure of natively textured SnO2 film and its application to an optical confinement-type a-Si:H solar cell”, IEEE Transactions on Electron Devices, 34 (1987) 271-276.
4.楊明輝編著, ”透明導電膜” ,藝軒圖書出版社 (2006) 5。
5.L. Sangaletti, L.E. Depero, A.Dieguez, G. Marca, and J.R. Morante, “Microstructure and morphology of tin dioxide multilayer thin film gas sensors”, sensors and Actuators B, 44 (1997) 268-274.
6.F. M. Amanullah, M. Saleh Al-Mobarak, A.M. Al-Dhafiri, and K.M. Al-Shibani, “Development of spray technique for the preparation of thin films and characterization of tin oxide transparent conductors”, Materials Chemistry and Physics, 59 (1999) 247-253.
7.J. Dutta, P. Roubeau, T. Emei-and, J. M. Laurent, A. Smith, F. Leblanc, and J. Pen-in, “Application of pyrosol deposition process for large-area deposition of fluorine-doped tin dioxide thin films”, Thin Solid Films, 239 (1994) 150-155.
8.E. Aperathitis, Z. Hatzopoulos, M. Androulidaki, V. Foukaraki, A. Kondilis, P. Panayotatos, C. G. Scott, and D. Sands, “RF sputtered indium-tin-oxide as antireflective coating for GaAs solar cells”, Materials and Solar Cells, 45 (1997) 161-168.
9.T. K. Gupta, and A. C. Miller, “Improved stability of the ZnO varistor via donor and acceptor doping at the grain boundary”, Journal of Materials Research, 3 (1988) 745-754.
10.G. Sanon, R. Rup, and A. Mansingh, “Growth and characterization of tin oxide films prepared by chemical vapour deposition”, Thin Solid Films, 190 (1990) 287-301.
11.A. Smith, J. M. Laurent, D. S. Smith, and J. P. Bonnet, “Relation between solution chemistry and morphology of SnO2- based thin films deposited by a pyrosol process”, Thin Solid Films, 266 (1995) 20-30.
12.C. Agashe, B. R. Marathe, M. G. Takwale, and V. G. Bhide, “Structural properties of SnO2:F films deposited by spray pyrolysis technique”, Thin Solid Films, 164 (1988) 261-264.
13.A. Smith, J. M. Laurent, D. S. Smith, and J. P. Bonnet, “Experimental survey of different precursor/solvent pairs for the deposition of tin dioxide by pyrosol”, Thin Solid Films, 315 (1998) 17-21.
14.Y. Kobayashi, M. Okamoto, and A. Tomita, “Preparation of tin oxide monolith by the sol-gel method from inorganic salt”, Journal of Materials Science, 31 (1996) 6125-6127.
15.D. J. Yoo, J. Tamaki, S. J. Park, N. Miura, and N. Yamazoe, “Suppression of grain growth in sol-gel-derived tin dioxide ultrathin films”, Journal of the American Ceramic Society, 79 (8) (1996) 2001-2204.
16.D. Das and R. Banerjee, “Properties of electron - beam evaporated tin oxide films”, Thin Solid Films, 147 (1987) 321-331.
17.J. L. Huang, D. W. Kuo, and B. Y. Shew, “The effects of heat treatment on the gas sensitivity of reactive sputtered SnO2 films”, Surface and Coatings Technology, 79 (1996) 263-267.
18.S. Swann, “Magnetron sputtering”, Physics and Technology, 19 (1988) 67-75.
19.Theo Hahn: Proc., International Tables for Crystallography, Vol. A Space-Group Symmetry, Second Edition, (1987) P575.
20.M. Batzill and U. Diebold, “The surface and materials science of tin oxide”, Progress in Surface Science, 79 (2005) 47-154.
21.Linus Pauling: Proc., “The Nature of the Chemical Band”, (1989) P514.
22.L. Luxmann and R. Dobner, Metallurgy,(Berlin) 34 (1980) 821-827.
23.R. Goswami, H. Herman, S. Sampath, X. Jiang, Y. Tian and G. Halada, “Plasma sprayed Mo–Mo oxide nanocomposites: synthesis and characterization”, Surface Coatings and Technology, 141 (2001) 220-226.
24.A. Martel, F. Caballero-Briones, J. Fandino, R. Castro-Rodriguez, P. Bartolo-Perez, A. Zapata-Navarro, M. Zapata-Torres, and J. L. Pena, “Discharge diagnosis and controlled deposition of SnOx:F films by DC-reactive sputtering from a metallic tin target”, Surface and Coatings Technology, 122 (1999) 136-142.
25.I. H. Kim, J. H. Ko, D. Kim, K. S. Lee, T. S. Lee, J.-h. Jeong, B. Cheong, Y.-J. Baik, and W. M. Kim, “Scattering mechanism of transparent conducting tin oxide films prepared by magnetron sputtering”, Thin Solid Films, 515 (2006) 2475-2480.
26.B. Stjerna and C. G. Granqvist, “Optical properties of SnOx thin films: Theory and experiment”, Applied Physics Letters, 57 (1990) 1989-1991.
27.T. Minami, H. Nanto, and S. Takata, “Highly conducting and transparent SnO2 thin films prepared by RF magnetron sputtering on low-temperature substrates”, Japanese Journal of Applied Physics, 27 (1988) L287-L289.
28.B. Stjerna and C. G. Granqvist, “Electrical conductivity and optical transmittance of sputter-deposited SnOx thin films”, Solar Energy Materials, 20 (1990) 225-233.
29.J.-L. Brousseau, H. Bourque, A. Tessier, and R. M. Leblanc, “Electrical properties and topography of SnO2 thin films prepared by reactive sputtering”, Applied Surface Science, 108 (1997) 351-358.
30.G. Beenish-Marchwicka, L. Krol-Stepniewska, and A. Mizuki, “Influence of annealing on the phase composition, transmission and resistivity of SnOx thin films”, Thin Solid Films, 113 (1984) 215-224.
31.Y. Hyo-Young , Natasha Popovich , Eric Chason, and P. David, “A study of the effect of process oxygen on stress evolution in d.c. magnetron-deposited tin-doped indium oxide”, Thin Solid Films, 411 (2002) 17–22
32.Yue-Song He, Joe C. Campbell, and Robert C. Murphy, “Electrical and optical characterization of Sb:SnO2”, Journal of Materials Research, 8 (1993) 3131-3134.
33.Chen J. L., Zhao Q. N., and Zhang J., “Optical and electronic properties of SnO2:Sb transparent conductive thin film deposited by r.f. magnetron reactive sputtering”, Chinese Journal of Liquid Crystals and Displays, 20 (2005) 406-411.
34.E. Elangovan, and K. Ramamurthi, “Studies on optical properties of polycrystalline SnO2:Sb thin films prepared using SnCl2 precursor”, Crystal Research and Technology, 38 (2003) 779-784.
35.V. Geraldo, L. Vicente de Andrade Scalvi, E. Augusto de Morais, C. Valentim Santilli, and S. Helena Pulcinelli, “Sb doping effects and oxygen adsorption in SnO2 thin films deposited via sol-gel”, Materials Research, 6 (2003) 451-453.
36.Seung-Yup Lee, Byung-Ok Park, “Structural, electrical and optical characteristics of SnO2:Sb thin films by ultrasonic spray pyrolysis”, Thin Solid Films, 510 (2006) 154-158.
37.李尚謙, ”以超音波霧化法製備之銻及鉭摻雜氧化錫薄膜之光電特性” ,碩士論文,國立中山大學材料科學研究所(2002)。
38.K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono, “A pyrosol technique to deposit highly transparent, low-resistance SnO2:F thin films from dimethyltin dichloride”, Journal of the Electrochemical Society, 146 (1999) 2113-2116.
39.A. G. Macedo, C. E. Cava, C. D. Canestraro, L. Contini, and L. S. Roman, “Morphology dependence on Fluorine doped tin oxide film thickness studied with atomic force microscopy”, Microsc Microanal, 11 (2005) 118-121.
40.Jean-Marc Laurent, Agnes Smith, David S. Smith, Jean-Pierre Bonnet, Rafael Rodriguez Clemente, “Morphology and physical properties of SnO2-based thin films deposited by the pyrosol process from dibutyltindiacetate”, Thin Solid Films, 292 (1997) 145-149.
41.Jochan Joseph, Varghese Mathew, and K. E. Abraham, “Studies on Cu, Fe, and Mn doped SnO2 semi-conducting transparent films prepared by a vapour deposition technique”, Chinese Journal of Physics, 45 (2007) 84-97.
42.V. V. Kissine, V. V. Sysoev, S. A. Voroshilov, “Conductivity of SnO2 thin films in the presence of surface adsorbed species”, Sensors and Actuators B, 79 (2001) 163-170.
43.Mohammad-Mehdi, Bagheri-Mohagheghi, and Mehrdad Shokooh-Saremi, “The influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique”, Journal of Physics D, 37 (2004) 1248-1253.
44.Do Hyung Park, Yang Hwi Cho, Young Rag Do, and Byung Tae Ahn, “Characterization of Eu-doped SnO2 thin films deposited by radio-frequency sputtering for a transparent conductive phosphor layer”, Journal of the Electrochemical Society, 153 (2006) H63-H67.
45.J. Joseph, V. Mathew, and K. E. Abraham, “Physical properties of Dy and La doped SnO2 thin films prepared by a cost effective vapour deposition technique”, Crystal Research and Technology, 41 (2006) 1020-1026.
46.Mohammad-Mehdi, Bagheri-Mohagheghi, and MEdrdad Shokooh-Saremi, “Electrical, optical and structural properties of Li-doped SnO2 transparent conducting films deposited by the spray pyrolysis technique: a carrier-type conversion study”, Semiconductor Science and Technology, 19 (2004) 764-769.
47.C. Kittel, Introduction to solid state physics, 7th ed., John Wiley & Sons, Inc., New York, USA, 1996), 156-158.
48.楊明輝編著, ”透明導電膜” ,藝軒圖書出版社 (2006) 11。
49.R. L. Weiher, “Electrical properties of single crystals of indium oxide”, Journal of Applied Physics, 33 (1962) 2834-2839.
50.J. H. W. De Wit, G. Van Unen, and M. Lahey, “Electron concentration and mobility in In2O3”, Journal of Physics and Chemistry of Solids, 38 (1977) 819-824.
51.D. H. Zhang and H. L. Ma, “Scattering mechanisms of charge carroers in transparent counding oxide film”, Applied Physics A, 62 (1996) 487-492.
52.N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films”, Journal of Vacuum Science and Technology A, 19 (2001) 1636-1641.
53.N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Hosono, “Phonon scattering in electron transport phenomena of ITO films”, Vacuum, 59 (2000) 492-499.
54.J. E. Morris, M. I. Ridge, C. A. Bishop, and R. P. Howson, “Temperature dependence of hall mobility in indium–tin oxide thin films”, Journal of Applied Physics, 51 [3] (1980) 1847-1849.
55.K. Lark-Horovitz, A. E. Middleton, E. P. Miller, and I. Walerstein, “Proceedings of the American physical society”, Physics Review, 69 (1946) 258.
56.E. Conwell, and V. F. Weisskopf, “Theory of impurity scattering in semiconductors”, Physics Review, 77 [3] (1950) 388-390.
57.Z. M. Tarzebski and J. P. Marton, “Physical properties of SnO2 materials. I - Preparation and defect structure”, Journal of the Electrochemical Society, 123 [7] (1976) 199C-205C.
58.Lata Gupta, Abhai Mansingh, and P. K. Srivastava, “Band gap narrowing and the band structure of tin-doped indium oxide films”, Thin Solid Films, 176 [1] (1989) 33-44.
59.李玉華, 科儀新知, 第十二卷第一期, (1990) 94-102。
60.Elias Burstein, “Anomalous optical absorption limit in InSb”, Physics Review, 93 [3] (1954) 632-633.
61.H. L. Hartangel, A. L. Dawar, A. K. Jain, and C. Jagadish, "Semiconducting Transparent Thin Films", Institute of Physics, Philadelphia, (1995) 219-230.
62.蔡育勳, 科儀新知, 第十二卷第一期, (1990) 78.
63.B. Chapman,”Glow Discharge Process”, John Wiley & Sons, New York, USA (1980) Chap. 3.
64.M. Ohring, “The Materials Science of Thin Films”, Academic Press, UK (1992) Chap. 3.
65.W. D. Westwood, “Handbook of Plasma Processing Technology”, Noyes Publications, Dack Ridge, New Jersey, USA (1990) Chap. 9.
66.J. Venables, “Nucleation and Growth of Thin films”, Reports on Progress in Physics, 47 (1984) 399-459.
67.L. Eckertova and T. Ruizicka, “Diagnostics and Applications of Thin Films”, Institute of Physics Publishing (1993) Ch.1&2.
68.L. John Vossen and Werner Kerm,”Thin Film Process”, Academic Process, (1999) 134.
69.N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, and H. Tawara, “Energy dependence of the ion-induced sputtering yields of monatomic solids”, Atomic Data and Nuclear Data Tables, 31 [1] (1984) 1.
70.Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering”, Thin Solid Films, 199 (1991) 223-230.
71.C. Kittel, “Introduction to Solid Physics”, 7th Edition, 61.
72.B. Stjerna and E. Olsson, “Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo”, Journal of Applied Physics, 76 [6] (1994) 3797-3817.
73.J.-L. Brousseau, H. Bourque, A. Tessier, and R. M. Leblanc, “Electrical properties and topography of SnO2 thin films prepared by reactive sputtering”, Applied Surface Science, 108 (1997) 351-358.
74.R. G. Goodchild, J. B. Webb, and D. F. Williams, “Electrical properties of highly conducting and transparent thin films of magnetron sputtered SnO2”, Journal of Applied Physics, 57 [6] (1985) 2308-2310.
75.K. Suzuki and M. Mizuhashi, “Structural, electrical and optical properties of r.f.-magnetron-sputtered SnO2:Sb film”, Thin Solid Film, 97 (1982) 119-127.
76.M. Buchanan, J. B. Webb, and D. F. Williams, “Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering”, Applied Physics Letters, 37 (1980) 213-215.
77.F. M. Amanullah, M. Saleh Al-Mobarak, A. M. Al-Dhafiri, and K. M. Al-Shibani, “Development of spray technique for the preparation of thin films and characterization of tin oxide transparent conductors”, Materials Chemistry and Physics, 59 (1999) 247-253.
78.Hong-Lei Ma, Xiao-Tao Hao, Jin Ma, Ying-Ge Yang, Jie Huang, De-Heng Zhang, and Xian-Gang Xu, “Thickness dependence of properties of SnO2:Sb films deposited on flexible substrates”, Applied Surface Science, 191 (2002) 313-318.
79.A. G. Macedo, C. E. Cava, C. D. Canestraro, L. Contini, and L. S. Roman, “Morphology dependence on fluorine doped tin oxide film thickness studied with atomic force microscopy”, Microsc Microanal, 11 (2005) 118-121.
80.Yoon-Heung Tak, Ki-Beom Kim, Hyoung-Guen Park, Kwang-Ho Lee, and Jong-Ram Lee, “Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode”, Thin Solid Films, 411 (2002) 12-16.
81.J. P. Chatelon, C. Terrier, and J. A. Roger, “Electrical and optical property enhancement in multilayered sol-gel-deposited SnO2 films”, Semiconductor Science and Technology, 14 (1999) 642-647.
82.Su-Shia Lin and Jow-Lay Huang, “The effect of thickness on the properties of heavily Al-doped ZnO films by simultaneous rf and dc magnetron sputtering”, Ceramics International, 30 (2004) 497-501.
83.李正中編著, ”薄膜光學與鍍膜技術”, 藝軒圖書出版社 (2006) 44。
84.K. S. Shamala, L. C. S. Murthy, and K. Narasimha Rao, “Studies on un doped and antimony doped tin oxide films prepared by electron beam evaporation and pyrolysis method”, Bulletin of Material Science, 27 [3] (2004) 295-301.
85.R. A. Smith, “Semiconductors. 2nd ed. London”, Cambridge University Press, (1979).
86.R. Summitt, J. A. Marley, and N. F. Borreilli, “The ultraviolet absorption edge of stannic oxide (SnO2)”, Journal of Physics and Chemistry of Solids, 25 (1964) 1465-1469.
87.I. H. kim, J. H. Ko, D. Kim, K. S. Lee, T. S. Lee, J. –h. Jeong, B. Cheong, Y. –J. Baik, and W. M. Kim, “Scattering mechanism of transparent conducting tin oxide films prepared by magnetron sputtering”, Thin Solid Films, 515 (2006) 2475-2480.
88.Y. Watanabe, H. Endo, H. Semba, and M. Takata, “Electronic structure and optical non-linearity of tin oxide thin films”, Journal of Non-Crystalline Solids, 178 (1994) 84-90.
89.G. Sanon, R. Rup, and A. Mansingh, “Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films”, Physics Review B, 44 [11] (1991) 5672-5680.
90.G. Haacke, “New figure of merit for transparent conductors”, Journal of Applied Physics, 47 [9] (1976) 4086-4089.
91.D. C. Carter, R. A. Arent, and D. J. Christie, “Parameter optimization in pulsed-DC reactive sputter deposition of aluminum oxide”, Society of Vacuum Coaters Conference Proceedings, (2007).
92.C. E. Wickersham, JR., J. E. Poople, J. S. Fan, “Arc generation from sputtering plasma-dielectric inclusion interactions”, Journal of Vacuum Science and Technology A, 20 [3] (2002) 833-838.
93.E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors”, Physics Review, 77 [3] (1950) 388-390.
94.C. Erginsoy, “Neutral impurity scattering in semiconductors”, Physics Review, 79 (1950) 1013-1014.
95.B. Orel, U. L. Stangar, U. Opara, M. Gaberscek, and K. Kalcher, “Preparation and characterization of Mo- and Sb: Mo-doped SnO2 sol-gel-derived films for counter-electrode applications in electrochromic devices”, Journal of Materials Chemistry, 5 [4] (1995) 617-624.
96.L.I. Maissel and R. Glang (Eds.), “Hand Book of Thin Film Technology”, McGraw-Hill, New York, (1980).
97.Z. Tang, Philip C. H. Chan, R. K. Sharma, G. Yan, I-Ming Hsing, and Johnny K. O. Sin, “Investigation and control of microcracks in tin oxide gas sensing thin-films”, Sensors and Actuators B, 79 (2001) 39-47.
98.D. Zaouk, R. al Asmar, J. Podlecki, Y. Zaatar, A. Khoury, A. Foucaran, “X-ray diffraction studies of electrostatic sprayed SnO2: F films”, Microelectronics Journal, 38 (2007) 884-887.
99.E. Shanthi, A. Banerjee, V. Dutta, and K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb+F)”, Journal of Applied Physics, 53 [3] (1982) 1615-1621.
100.H. Kostlin, R. Jost, and W. Lems, “Optical and electrical properties of doped In2O3 films”, Physica Status Solidi (a), 29 (1975) 87-93.
101.J. C. Manifacier, L. Szepessy, J. F. Bresse, M. Perotin, and R. Stuck, “In2O3:(Sn) and SnO2:(F) films - application to solar energy conversion part II - Electrical and optical properties”, Materials Research Bulletin, 14 (1979) 163-175.
102.D. Y. Geng, Z. D. Zhang, M. Zhang, D. Li, X. P. Song, and K. Y. Hu, “Structure and surface characterization of - MoO3 whiskers synthesized by an oxidation process”, Scripta Materialia, 50 (2004) 983-986.
103.E. Bontempi, E. Zampiceni, G. Sberveglieri, and L. E. Depero, “Structural characterization of tin and molybdenum oxides thin films deposited by RGTO”, Chemistry of Materials, 13 (2001) 2608-2612.
104.H. C. Lee and O. O. Park, “Electron scattering mechanisms in indium-tin-oxide thin films : grain boundary and ionized impurity scattering”, Vacuum, 75 (2004) 275-282.
105.I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows”, Journal of Applied Physics, 60 (1986) R136 – R138.
106.T. Inagaki, J. Nakajima, Y. Nashimura, Fujitsu, J. Sci. Technol., 5 (1969) 235.
107.M. Anastasescu, M. Gartner, S. Mihaiu, C. Anastasescu, M. Purica, M. Manea, and M. Zaharescu, “Optical and structural properties of SnO2-based sol-gel thin films”, International Semiconductor Conference, 1 (2006) 163-166.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊