跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林耿立
研究生(外文):Keng-Li Lin
論文名稱:Sn-Zn-Ag-xAl-yBi無鉛銲錫合金之顯微結構、機械性質及潤濕性質研究
論文名稱(外文):The Investigation on Microstructures, Mechanical and Wetting Properties of Sn-Zn-Ag-xAl-yBi Solder Alloys
指導教授:李世欽李世欽引用關係鄭壽昌
指導教授(外文):Shih-Chin LiShou-Chang Jeng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:137
中文關鍵詞:潤濕行為機械性質高溫安定化顯微結構無鉛銲錫合金
外文關鍵詞:wetting behaviorlead-free solder alloymechanical propertymicrostructurethermal stabilization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為探討Sn-8.55Zn-0.5Ag-xAl-yBi(x = 0.01、0.05 和0.1, y = 7.5、10、15 以及20 wt.%)等合金的顯微結構、機械性質以及潤濕性質等,並評估出最佳取代Sn-Pb 合金之合金成份。
顯微結構分析結果顯示,添加0.5 wt.% Ag 元素於Sn-Zn 共晶合金中,會形成AgZn3 化合物,此時Sn-Zn 成份由共晶轉為過共晶的組織。添加0.01 ~ 0.1 wt.% 之Al 元素會有助於初晶Zn 相的析出,添加7.5 ~ 20 wt.% 的Bi 元素亦有助於初晶Zn 相的粗大化,且富Bi 相會於基地中析出。當合金經過120 °C 高溫安定化後,基地中之初晶Zn 相與富Bi 相皆有粗大圓鈍化的效果,而當Al 元素含量超過0.05 wt.% 時,經由高溫安定化後會在晶界上析出且相互交連。
機械性質的研究結果顯示出,添加0.01 ~ 0.1 wt.% 之Al 元素有助於提升合金的機械強度與總拉伸應變量。Sn-8.55Zn-0.5Ag-xAl 合金之抗拉強度由原本Sn-8.55Zn-0.5Ag 三元合金的42.0 MPa 分別增加至46.7(0.01wt.%)、48.4(0.05 wt.%)以及50.1(0.1 wt.%)MPa。降伏強度分別為由原本三元合金的34.1 MPa 增加至38.0(0.01 wt.%)、41.0(0.05 wt.%)以及41.7(0.1 wt.%)MPa。維氏硬度由原本三元合金的16.9 HV 分別增加至17.9(0.01 wt.%)、21.0(0.05 wt.%)以及21.5(0.1 wt.%)HV。總伸長應變量由原本三元合金的41.9 % 分別增加至44.7(0.01 wt.%)、53.4
(0.05 wt.%)以及56.0(0.1 wt.%)%。添加7.5 wt.% Bi 元素時,更能有效提升合金之強度,抗拉強度由原本42.0 MPa 增加至93.0 MPa。降伏強度由原本34.1 MPa 增加至87.5 MPa。維氏硬度由原本16.9 HV 增加至27.2 HV。而當含量增加為10 ~ 20 wt.%,其機械強度則無明顯再進一步之提升的現象,而Sn-8.55Zn-0.5Ag-yBi 合金之總伸長應變量卻隨著Bi 含量增加而下降,由原本41.9 % 分別下降至26.4(7.5 wt.%)、24.1(10 wt.%)、22.1(15 wt.%)以及 17.9(20 wt.%)%。而Sn-8.55Zn-0.5AgxAl-yBi 等合金的機械性質結果與Sn-8.55Zn-0.5Ag-yBi 合金的結果相似。
在對Cu 基材之潤濕行為的研究結果發現,於合金中添加0.01 ~ 0.1 wt. % Al 元素,與7.5 ~ 20 wt.% Bi 元素皆有助於降低其接觸角而增進其對Cu 基材之潤濕性質,且同時添加兩種元素時其潤濕性質更好。Sn-8.55Zn-0.5Ag-xAl 合金的接觸角變化由原本三元合金的42.2° 分別降低至38.5°(0.01 wt.%)、36.1°(0.05 wt.%)以及35.5°(0.1 wt.%)。Sn-8.55Zn-0.5Ag-yBi 合金的接觸角變化由原本42.2° 分別降低至33.0°(7.5 wt.%)、31.2°(10 wt.%)、23.0°(15 wt.%)以及10.6°(20 wt.%)。
The microstructures, mechanical properties and wettability of Sn-8.55Zn-0.5Ag-xAl-yBi (x = 0.01, 0.05 and 0.1. y = 7.5, 10, 15 and 20 wt. % )lead-free solder alloys were investigated. The purpose of this research is to find the best composition to replace the Sn-Pb solder.
The micorstructures of SEM show that when added 0.5 wt. % Ag to the Sn-Zn eutectic alloy, the AgZn3 compound formation and the matrix of this alloy become the Sn-Zn hyper-eutectic composition. When added 0.01 ~ 0.1 wt. % Al element to solder, the P-Zn (Primary-Zinc) phase become thicker. When add 7.5 ~ 20 wt. % Bi element to solders, the P-Zn phase precipitate increasely and the matrix change Sn-Zn hypo-eutectic composition into Sn-Zn hyper-eutectic composition, and the Bi-rich be precipitated in the matrix. After thermal stabilization at 120 °C, the precipitates in the matrix become coalesced and ball-like. When the Al element content above 0.05 wt. %, it be precipitated at the grain boundary after thermal stabilization.
The result of mechanical properties shows that when added 0.01 ~ 0.1 wt. % Al element to this alloy, the mechanical strength and total elongation enhanced. The UTS of Sn-8.55Zn-0.5Ag-xAl solders are increased from 42.0MPa to 46.7, 48.4, and 50.1 Mpa respectively. The yield stress is increased from 34.1 to 38.0, 41.0 and 41.7 MPa. The Vicker’s microhardness is increased from 16.9 HV to 17.9, 21.0 and 21.5 HV. The total elongation is increased from 41.9 to 44.7, 53.4 and 56.0 %. When added 7.5 wt. % Bi element to the solder, the mechanical strength is increased dramatically, the UTS is increased from 42.0 MPa to 93.0 MPa. The yield strees is increased from 34.1 to 87.5 Mpa. The Vicker’s microhardness is increased from 16.9 HV to 27.2 Hv. Then, when added 10 ~ 20 wt. % Bi element to this alloy, themechanical strength will not be improved further, but the total elongations decrease with the Bi content increased, those decrease from 41.9 % to 26.4, 24.1, 22.1 and 17.9 % respectively. The results of mechanical properties on Sn-8.55Zn-0.5Ag-xAl-yBi solders were similar with the Sn-8.55Zn-0.5Ag- yBi solders.
The results of the wettability to Cu substrate indicates, when added 0.01 ~ 0.1 wt. % Al element or 7.5 ~ 20 wt. % Bi element can enhance the wettability of solder/Cu substrate, and when added both of them, the better efftct have. The contact angle of Sn-8.55Zn-0.5Ag-xAl solders with Cu substrate decrease from 42.2° to 38.5°, 36.1° and 35.5° respectively. The contact angle of the Sn-8.55Zn-0.5Ag-yBi solders with Cu substrate decrease from 42.2° to 33.0°, 31.2°, 23.0° and 10.6° respectively.
中文摘要 I
ABSTRACT III
總目錄 V
表目錄 IX
圖目錄 X
第一章 簡介 1
1-1 前言 1
1-2 文獻回顧與理論基礎 3
1-2-1 Sn-Pb合金 3
1-2-2 Sn-Ag合金 4
1-2-2-1 添加Bi元素 4
1-2-2-2 添加Cu元素 5
1-2-2-3 添加Ni元素 5
1-2-2-4 添加Sb元素 6
1-2-2-5 添加Zn元素 6
1-2-3 Sn-Bi合金 6
1-2-4 Sn-Cu合金 7
1-2-5 Sn-In合金 7
1-2-6 Sn-Sb合金 8
1-2-7 Sn-Zn合金 8
1-2-7-1 添加Ag元素 9
1-2-7-2 添加Al元素 9
1-2-7-3 添加Bi元素 9
1-2-7-4 添加Cu元素 10
1-2-7-5 添加Ga元素 10
1-2-7-6 添加In元素 10
1-3 無鉛銲錫合金之選擇 10
1-4 研究動機與目的 14
第二章 實驗步驟與方法 18
2-1 高溫安定化前後對錫鋅銀和錫鋅銀(鋁或鉍)和錫鋅銀鋁 鉍合金的顯微結構及結晶結構之影響 18
2-2 錫鋅銀和錫鋅銀(鋁或鉍)和錫鋅銀鋁鉍合金之機械性質 測試 22
2-3 錫鋅銀和錫鋅銀(鋁或鉍)和錫鋅銀鋁鉍合金對銅基材之 潤濕行為分析 26
第三章 結果與討論 29
3-1 高溫安定化前後對錫鋅銀和錫鋅銀(鋁或鉍)和錫鋅銀鋁 鉍合金的顯微結構及結晶結構之影響 29
3-1-1 Sn-8.55Zn-0.5Ag-xAl 合金 29
3-1-1-1 Sn-8.55Zn-0.5Ag-xAl 合金之顯微結構與結晶結構 29
3-1-1-2 高溫安定化後對Sn-8.55Zn-0.5Ag-xAl 合金的顯微 結構之影響 38
3-1-2 Sn-8.55Zn-0.5Ag-yBi 合金 46
3-1-2-1 Sn-8.55Zn-0.5Ag-yBi 合金之顯微結構與結晶結構 46
3-1-2-2 高溫安定化後對Sn-8.55Zn-0.5Ag-yBi 合金的顯微 結構之影響 51
3-1-3 Sn-8.55Zn-0.5Ag-0.01Al-yBi 合金 57
3-1-3-1 Sn-8.55Zn-0.5Ag-0.01Al-yBi 合金之顯微結構與結 晶結構 57
3-1-4 Sn-8.55Zn-0.5Ag-0.05Al-yBi 合金 66
3-1-4-1 Sn-8.55Zn-0.5Ag-0.05Al-yBi 合金之顯微結構與結 晶結構 66
3-1-4-2 高溫安定化後對Sn-8.55Zn-0.5Ag-0.05Al-yBi 合金 的顯微結構之影響 69
3-1-5 Sn-8.55Zn-0.5Ag-0.1Al-yBi 合金 77
3-1-5-1 Sn-8.55Zn-0.5Ag-0.1Al-yBi 合金之顯微結構與結晶 結構分析 77
3-1-5-2 高溫安定化後對Sn-8.55Zn-0.5Ag-0.1Al-xBi 合金 顯微結構與結晶影響 80
3-2 錫鋅銀和錫鋅銀(鋁或鉍)和錫鋅銀鋁鉍合金之機械性質 87
3-2-1 Sn-8.55Zn-0.5Ag-xAl 合金之機械性質與破斷面觀察 87
3-2-2 Sn-8.55Zn-0.5Ag-yBi 合金之機械性質與破斷面觀察 91
3-2-3 Sn-8.55Zn-0.5Ag-0.01Al-yBi 合金之機械性質與破斷 面觀察 95
3-2-4 Sn-8.55Zn-0.5Ag-0.05Al-yBi 合金之機械性質與破斷 面觀察 98
3-2-5 Sn-8.55Zn-0.5Ag-0.1Al-yBi 合金之機械性質與破斷 面觀察 101
3-3 錫鋅銀和錫鋅銀(鋁或鉍)和錫鋅銀鋁鉍合金對銅基材之 潤濕行為 106
3-3-1 Sn-8.55Zn-0.5Ag-xAl 合金之潤濕行為 106
3-3-2 Sn-8.55Zn-0.5Ag-yBi 合金之潤濕行為 106
3-3-3 Sn-8.55Zn-0.5Ag-xAl-yBi 合金之潤濕行為 107
第四章 結論 120
參考文獻 122
誌謝 135
自述 136
會議論文 137
1.B. Trumble, ”Get the Lead Out!”, IEEE Spectrum, Vol. 35, No. 5, pp. 55-60 (1998).
2.H. Reid, D. Moynihan, J. Leiberman, and B. Bradley, “Toxic Lead Reduction Act of 1990”, p. S-2637 (1990).
3.張淑如, “鉛對人體的危害”,勞工安全衛生簡報,第12期 (1995)。
4.鍾崇焱、柯捷男,可怕的鉛污染,科學發展,2002 年9 月,357 期, 52-55頁。
5.J. Glazer, “Metallurgy of low temperature Pb-free solders for electronic assembly”, Int. Mater. Rev., Vol.40, pp. 65-93 (1995).
6.K.L. Lin, L.H. Wen, and T.P. Liu, “The microstructures of the Sn-Zn-Al solder Alloys”, J. Electron. Mater., Vol.27, pp. 97-105 (1998).
7.M. McCormack, and S. Jin, “New, Lead-free Solders”, J. Electron. Mater., Vol.23, pp. 635-640 (1994).
8.J. Glazer, “Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review”, J. Electron. Mater., Vol. 23, pp. 693-700 (1994).
9.K. Suganuma, “Advances in lead-free electronics soldering”, Curr. Opin. Solid State Mater. Sci., Vol.5, pp. 55-64 (2001).
10.A.Z. Miric and A. Girusd, “Lead-free Alloys”, Soldering & Surface Mount Technology, Vol. 10, No. 1, pp. 19-25 (1998).
11.《科學發展》2007年8月,416期,58-63頁
12.R.J. Klein Wassink, “Soldering in Electronic”, (Electrochemical publications, Ayr), pp. 98-101 (1984).
13.W.K. Choi, and H.M. Lee, “Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5Ag and Ni/Cu substrate”, J. Electron. Mater., Vol.28, pp. 1251-1255 (1996).
14.M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering. R, Vol. 27, No. 5-6, pp. 95-141 (2000).
15.H.H. Manko, “Solders and Soldering, 2nd Edn.”, McGraw-Hill, New York, Chap. 3, pp. 55-153 (1979).
16.J.S. Hwang, “Solder Paste in Electronics Packaging, Van Nostrand Reinhold, New York”, Chap. 4, pp. 71-121 (1992).
17.S. Jin, “Developing Lead-free Solders: A Challenge and Opportunity”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, pp. 13 (1993).
18.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 3, p. 3014 (1990).
19.莊強名,“無鉛化共晶銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,博士論文,(2001)。
20.D. Tribula, “Creep in Shear of Experimental Solder Joints”, J. Electron. Packag., Vol. 112, pp. 87-93 (1990).
21.D. Tribula, D. Grivas, D.R. Frear, J.W. Morris Jr., “Observations on the Mechanisms of Fagitue in Eutectic Pb-Sn Solder Joints” , ASME J. Electron. Packag., Vol. 111, pp. 83-89 (1989).
22.V.I. Igoshev, J.I. Kleiman, D. Shangguan, C. Lock, S. Wong, and M.Wiseman, “Microstructure changes in Sn-3.5Ag solder alloy during creep”, J. Electron. Mater., Vol. 27, pp. 1367-1371 (1998).
23.N. Wade, T. Akuzawa, S. Yamada, D. Sugiyama, I.S. Kim, and K. Miyahara, “Effect of microalloying on the creep strength and microstructure of an eutectic Sn-Pb solder alloy”, J. Electron. Mater., Vol. 28, pp. 1286-1289 (1999).
24.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 1, p. 94 (1990).
25.F. Lang, H. Tanaka, O. Munegata, T. Taguchi, and T. Narita, “The effect of strain rate and temperature on the tensile properties of Sn- 3.5Ag solder”, Materials Characterization, Vol. 54, pp. 223-229 (2005).
26.C. Melton, “The effect of reflow process variables on the wettability of Lead-free solders”, JOM, July, pp. 33-35 (1993).
27.李洋憲,“Sn-Ag-xNi 複合銲料與銅基板間銲點的機械性能及微結構之研究”, 國立成功大學機械工程學系,博士論文,(2006)。
28.J.M. Song, J.J. Lin, C.F. Huang, and H.Y. Chuang, “Crystallization, morphology and distribution of Ag3Sn in Sn–Ag–Cu alloys and their influence on the vibration fracture properties”, Materials Science and Engineering A, Vol. 466, pp. 9-17 (2007).
29.D.R. Flanders, E.G. Jacobs, and R.F. Pinizzotto, “Activation energies of intermetallic growth of Sn-Ag eutectic solder on Copper substrates”, J. Electron. Mater., Vol. 26, pp. 883-887 (1997).
30.W. Yang, R.W. Messler, Jr., and L.E. Felton, “Microstructure evolution of eutectic Sn-Ag solder joints”, J. Electron. Mater., Vol. 23, pp. 765-772 (1994).
31.S.W. Shin, and J. Yu, “Creep Deformation of Lead-Free Sn–3.5Ag–Bi Solders”, Jpn. J. Appl. Phys. Vol. 42, pp. 1368-1374 (2003).
32.P.T. Vianco, and J.A. Rejent, “Properties of Ternary Sn-Ag-Bi Solder Alloys: Part II-Wettability and Mechanical Properties Analyses”, JEM, Vol. 28, pp. 1138-1143 (1999).
33.Y.C. Chan, A. Sharif, and M.N. Islam, “Interfacial reactions of BGA Sn–3.5%Ag–0.5%Cu and Sn–3.5%Ag solders during high- temperature aging with Ni/Au metallization”, Materials Science and Engineering B, Vol. 113, pp. 184-189 (2004).
34.Y. Kariya, and M. Otsuka, “Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloys”, J. Electron. Mater., Vol. 27, pp. 1229-1235 (1998).
35.詹承偉,“Sn-3.0Ag-0.5Cu-xNi 無鉛銲錫合金拉伸及振動破壞特性之研究”,國立成功大學材料科學及工程學系,碩士論文,(2007)。
36.I.E. Anderson, “Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications”, J. Mater. Sci., Vol. 18, pp. 55-76 (2007).
37.F.J. Wang, Z.S. Yu, and K. Qi, “Intermetallic compound formation at Sn–3.0Ag–0.5Cu–1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions” Journal of Alloys and Compounds, Vol. 438 pp. 110-115 (2007).
38.P. Liu, F. Guo, “Effects of Ni Particle Addition on Microstructure and Properties of SnAg Based Composite Solders”, Electronics Packaging Technology Conference, pp. 717-721 (2006).
39.H.T. Lee, H.S. Lin, C.S. Lee, and P.W. Chen, “Reliability of Sn–Ag– Sb lead-free solder joints”, Materials Science and Engineering A. Vol. 407, pp. 36-44 (2005).
40.F. Guo, J.P. Lucas, and K.N. Subramanian, “Creep behavior in Cu and Ag particle-reinforced composite and eutectic Sn-3.5Ag and Sn-4.0Ag-0.5Cu non-composite solder joints”, J. Mater. Sci.: Mater. Electron., Vol. 12, pp. 27-35 (2001).
41.M. Kamal, “Effect of zinc additions on structure and properties of Sn–Ag eutectic lead-free solder alloy”, J. Mater. Sci.: Mater. Electron., Vol. 19, pp. 81-84 (2008).
42.A. Fawzy, “Effect of Zn addition, strain rate and deformation temperature on the tensile properties of Sn–3.3 wt.% Ag solder alloy”, Materials Characterization, Vol. 58, pp. 323-331 (2007).
43.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 1, p. 794 (1990).
44.M. Ackroyd, et al., Metals Tech., Feb., p. 73 (1975).
45.T.A. Powers, T.J. Singler, and J.A. Clum, “Role of Tin content in the wetting of Cu and Au by Tin-Bismuth solders”, J. Electron. Mater., Vol.23, pp. 773-778 (1994).
46.M. McCormack, and S. Jin, “Progress in the design of new Lead-free solder alloys”, JOM, July, pp. 36-40 (1993).
47.S.K. Kang, A.K. Sarkhel, “Lead (Pb)-Free Solders for Electronic Packaging”, J. Electron. Mater., Vol. 23, pp. 701-707 (1994).
48.W.J. Tomlinson, I. Collier, “The mechanical properties and microstructures of copper and brass joints soldered with eutectic tin-bismuth solder”, J. Mater. Sci., Vol. 22, pp. 1835-1839 (1987).
49.S. Jin, M. Mccormack, “Dispersoid Additions to a Pb-Free Solder for Suppression of Microstructural Coarsening”, J. Electron. Mater., Vol. 23, pp. 735-739 (1994).
50.M. Mccormack, S. Jin, G.W. Kammlat, “Enhanced Solder Alloy Performance by Magnetic Dispersions”, IEEE Trans. Compon. Packag. Manuf. Tech., Vol. 17 pp. 452-457 (1994).
51.V.I. Igoshev, and J.I. Kleiman, “Creep phenomena in Lead-free solders”, J. Electron. Mater., Vol. 29, pp. 244-250 (2000).
52.L.E. Felton, C.H. Raeder, and D.B. Knorr, “The properties of Tin-Bismuth alloy solders”, JOM, July, pp. 28-32 (1993).
53.H.W. Miao, and J.G. Duh “Microstructure evolution in Sn–Bi and Sn–Bi–Cu solder joints under thermal aging”, Materials Chemistry and Physics, Vol. 71, pp. 255-271 (2001).
54.J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, and D.A. Hutt, “Interfacial reactions between molten Sn–Bi–X solders and Cu substrates for liquid solder interconnects”, Acta Mater., Vol. 54, pp. 2907-2922 (2006).
55.R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, and A. Khalatbari, “Effect of cooling rate on the room-temperature indentation creep of cast lead-free Sn–Bi solder alloys”, Phys. Stat. Sol., Vol. 204, pp. 2302-2308 (2007).
56.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 2, p. 1481(1990).
57.J. Shen, Y. Liu, Y. Han, and H. Gao, “Microstructure and mechanical properties of Lead-free Sn–Cu solder composites prepared by rapid directional solidification” J. Electron. Mater., Vol. 18, pp. 1235-1238 (2007).
58.何念葶,“Sn-xCu系及Sn-0.4Cu-0.3Ni無鉛銲錫合金振動破壞特性之微觀組織效應”,國立成功大學材料科學及工程學系,碩士論文,(2006)。
59.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 3, p. 2295 (1990).
60.S.K. Kang, and A.K. Sarkhel, “Lead(Pb)-free solders for electronic packaging”, J. Electron. Mater., Vol. 23, pp. 701-707 (1994).
61.Indium Corporation of America, Utica, NY 13503.
62.J.L. Freer, and J.W. Morris, Jr., “Microstructure and creep of eutectic Indium/Tin on Copper and Nickel substrates”, J. Electron. Mater., Vol. 21, pp. 647-652 (1992).
63.J.W. Kim, and S.B. Jung, “Characterization of the shear test method with low melting point In–48Sn solder joints”, Materials Science and Engineering A, Vol. 397, pp. 145-152 (2005).
64.J.W. Morris, Jr., J.L. Freer Goldstein, and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solders”, JOM, July, pp. 25-27 (1993).
65.V.I. Igoshev, and J.I. Kleiman, “Creep phenomena in Lead-free solders”, J. Electron. Mater., Vol. 29, pp. 244-250 (2000).
66.G.S. Al-Ganainy, “Effect of heat treatment on the work-hardening parameters, of a new Pb-free solder Sn–9.8 wt% In alloy” Phys. Stat. Sol. Vol. 199, pp. 169-176 (2003).
67.W.A. Baker, “The creep properties of soft solders and soft-soldered joints”, J. Inst. Metals, Vol. 65, pp. 277-300 (1939).
68.W. Allen, and J. Perepezko, “Constitution of the Tin-Antimony system”, Scrip. Metal. Mater., Vol. 24, pp. 2215-2220 (1990).
69.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 3, p. 3304 (1990).
70.M.M. EL-Bahay, M.E. EL Mossalamy, M. Mahdy, and A.A. Bahgat, “Study of the mechanical and thermal properties of Sn–5 wt% Sb solder alloy at two annealing temperatures”, Phys. Stat. Sol., Vol. 198, pp. 76-90 (2003).
71.M. Yamashita, S. Tada, and K. Shlokawa, “Lead-Free Solder”, U.S.A. Patent no. 6179935-B1, Jan. 30 (2001).
72.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 3, p. 3416 (1990).
73.K.I. Chen, S.C. Cheng, S. Wu, and K.L. Lin “Effects of small additions of Ag, Al, and Ga on the structure and properties of the Sn–9Zn eutectic alloy”, Journal of Alloys and Compounds, Vol. 416, pp. 98-105 (2006).
74.K. Suganuma, T. Murata, H. Noguchi, Y. Toyoda, “Heat resistance of Sn-9Zn solder/Cu interface with or without coating”, J. Mater, Res., Vol.15, pp. 884-891 (2000).
75.S.P. Yu, H.J. Lin, M.H. Hon, “Effects of Process Parameters on the Soldering Behavior of the Eutectic Sn-Zn Solder on Cu Substrate”, J. Mater. Sci.: Mater. Electron., Vol.11, pp. 461-471 (2000).
76.M. N. Islam and Y. C. Chan, “Wetting and Interfacial reactions of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder”, International Conference on Asian Green Electronics, pp. 178-184 (2005).
77.M.N. Islam, Y.C. Chan, M.J. Rizvi, and W. Jillek, “Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder”, Journal of Alloys and Compounds, Vol. 400, pp. 136-144 (2005).
78.J.W. Yoon, and S.B. Jung, “Reliability studies of Sn–9Zn/Cu solder joints with aging treatment”, Journal of Alloys and Compounds, Vol. 407 pp. 141-149 (2006).
79.J.M. Song, G.F. Lan, T.S. Lui, and L.H. Chen, “Microstructural features and vibration fracture behavior of Sn-Zn-Ag solder alloys”, IEEE CMPT, Int’l Symp. on Electron. Mat. Packag., pp.276-281, Taiwan, Kaosiung, Dec. (2002).
80.K.L. Lin, and C.L. Shih, “Wetting interaction between Sn-Zn-Ag solders and Cu”, J. Electron. Mater., Vol. 32, pp. 95-100 (2002).
81.N.S. Liu, K.L. Lin, “The effect of Ga content on the wetting reaction and interfacial morphology formed between Sn–8.55Zn–0.5Ag– 0.1Al–xGa solders and Cu”, Scrip. Mater., Vol. 54, pp. 219-224 (2006).
82.H.E. Townsend, and J.C. Zoccola, “Atmospheric corrosion resistance of 55% Al-Zn coated sheet steel: 13 year test results”, Mat. Performance, Vol. 18, pp. 13-20 (1979).
83.K.L. Lin and T.P. Liu, “High-Temperature Oxidation of a Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 50, pp. 255-264 (1998).
84.K.L. Lin, and L.H. Wen, “The wetting of copper by Al–Zn–Sn solders”, J. Mater. Sci.: Mater. Electron., Vol. 9, pp. 5-8 (1998).
85.H.E. Townsend, and C. F. Meitzner, “Corrosion resistance of Zinc/4% Aluminum and Zinc/7% Aluminum alloy coatings compared to Zinc and Zinc/54% Aluminum alloy coatings”, Mat. Performance, Vol. 22, pp. 54 (1983).
86.S.P. Yu, M.H. Hon, and M.C. Wang, “The adhesion strength of a Lead-free solder hot-dipped on Copper substrate”, J. Electron. Mater., Vol. 29, pp. 237-243 (2000).
87.Y.S. Kim, K.S. Kim, C.W. Hwang, and K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys”, Journal of Alloys and Compounds, Vol. 352, pp. 237-245 (2003).
88.J. Zhou, Y. Sun, and F. Xue, “Properties of low melting point Sn–Zn–Bi solders” Journal of Alloys and Compounds, Vol. 397 pp. 260-264 (2005).
89.M.N. Islam, Y.C. Chan, M.J . Rizvi, and W. Jillek, “Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder”, Journal of Alloys and Compounds Vol. 400 pp. 136-144 (2005).
90.F.Y. Hung, T.S. Lui, L.H. Chen, and J.G. You, “Vibration fracture behavior of Sn–9Zn–xCu lead-free solders”, J. Mater. Sci., Vol. 42, pp. 3865-3873 (2007).
91.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 2, p. 1855 (1990).
92.A.M. Jackon, P.T. Vianco, and I. Artaki, “Manufacturing Feasibility of Several Lead-Free Solders for Electronic Assembly”, Proceeding of the 7th International SAMPE Electronics Conference, Parsippany, NJ, USA, P.381 (1994).
93.黃家緯,“錫鋅系無鉛銲錫(Sn-Zn-Al-Ag Solders)之研究”,國立成功大學材料科學及工程學系,博士論文,(2005)。
94.M.A. Carroll, and M.E. Warwick, “Surface tension of Sn-Pb alloys: part1 effect of Bi, Sb, P, Ag, and Cu on 60Sn-40Pb solder”, Mater. Sci. Technol. Vol.3, pp. 1040-1045 (1987).
95.S.W. SHIN, and J. YU, “Creep Deformation of Lead-Free Sn–3.5Ag– Bi Solders”, Jpn. J. Appl. Phys. Vol. 42, pp. 1368-1374 (2003).
96.R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, and A. Khalatbari, “Room-temperature indentation creep of lead-free Sn–Bi solder alloys”, J. Mater. Sci.: Mater. Electron., Vol. 18, pp. 1071-1078 (2007).
97.M. Kamal, and T. El-Ashram, “Microcreep of rapidly solidified Sn– 0.7 wt.% Cu–In solder alloys”, Material Science and Engineering A, Vol. 456, pp. 1-4 (2007).
98.G.S. Al-Ganainy, “Creep Characteristics of a New Pb-Free Soldering Sn–In Pewter”, phys. stat. sol. Vol. (a) 193 No. 2, pp. 226-235 (2002).
99.G.S. Al-Ganainy, “Effect of Structural Transformation on the Creep Parameters of Sn–9.8 wt% In Alloy”, phys. stat. sol. Vol. (a) 188 No. 3, pp. 1153-1159 (2001).
100.R. Mahmudi, , A.R. Geranmayeh, M. Bakherad, and M. Allami, “Indentation creep study of lead-free Sn–5%Sb solder alloy”, Material Science and Engineering A, Vol. 457, pp. 173-179 (2007).
101.K.I. Chen, and K.L. Lin, “Effect of Gallium on wettability, microstructures and mechanical properties of the Sn-Zn-Ag-Ga and Sn-Zn-Ag-Al-Ga solder alloys”, IEEE CMPT, Int’l Symp. on Electron. Mat. Packag., pp. 49-54 (2002).
102.S.M. Udit, and K.L. Lin, “Electrochemical corrosion behaviour of lead-free Sn–8.5Zn–XAg–0.1Al–0.5Ga solder in 3.5% NaCl solution”, Materials Science and Engineering A, Vol. 406, pp. 34-42 (2005).
103.S.M. Udit, and K.L. Lin, “Potentiodynamic Polarization Measurement of Sn–8.5Zn–XAl–0.5Ga Alloy in 3.5% NaCl Solution”, Journal of The Electrochemical Society, Vol. 153 (8), pp. B319-B324 (2006).
104.S.M. Udit, and K.L. Lin, “The polarization characteristics of Pb-free Sn–8.5Zn–XAg–0.1Al–0.05Ga alloy in 3.5% NaCl”, Corrosion Science, Vol. 49, pp. 2815-2831 (2007).
105.H.L. Pang, B.S. Xiong, and T.H. Low, “Low cycle fatigue models for lead-free solders”, Thin Solid Films Vol. 462–463, pp. 408-412 (2004).
106.H.W. Miao, J.G. Duh, “Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints”, J. Mater. Sci.: Material in Electronics, Vol. 11 pp. 609-618 (2000).
107.鄭壽昌,“錫-鋅-銀-鋁無鉛銲錫的機械、潤濕及時效性之研究”,國立成功大學材料科學及工程學系,博士論文,(2004)。
108.H. Mavoori, J.Chin, S. Vaynman, B. Moran, L. Keer, and M. Fine, “Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders”, J. Electron. Mater., Vol. 26, pp. 783-790 (1997).
109.W.J. Plumbridge, “Review solders in electronics”, J. Mater. Sci. Vol. 31, pp. 2501-2514 (1996).
110.J. Glazer, “Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review”, J. Electron. Mater. Vol. 23, pp. 693-700 (1994).
111.R.R. Tummala, “Fundamentals of Microsystems Packaging”, McGRAW-HILL, Chap. 18, 2001, pp. 735-740.
112.R.R. Tummala, “Fundamentals of Microsystems Packaging”, McGRAW-HILL, Chap. 21, 2001, pp. 860-865.
113.http://big5.mofcom.gov.cn/gate/big5/price.mofcom.gov.cn/commprice/site/price/queryinfo.jsp ,『商品價格網』,2008/06。
114.K.L. Lin, L.H. Wen, and T.P. Liu, “The microstructures of the Sn-Zn-Al solder alloys”, J. Electron. Mater., Vol.27, pp. 97-105 (1998).
115.NCMS, Lead-free Solder Project Final Report, NCMS Report 0401 RE-96, National Center for Manufacturing Sciences, Michigan, 1997.
116.P.J. Wood and K.L. Nimmo, “In search of new lead-free electronic solders”, J. Electron. Mater., Vol.23, pp. 709-713 (1994).
117.M. McCormack and S. Jin, “New, Pb-free Solder Alloys”, J. Electron. Mater., Vol.23, p.635 (1994).
118.K.L. Lin and Y.C. Wang, “Wetting interaction of Pb-Free Sn-Zn-Al solders on metal plated substrate”, J. Electron. Mater., Vol.27, pp.1205-1210 (1998).
119.K.L. Lin, F.C. Chung, and T.P. Liu, “The potentiodynamic polarization behavior of Pd-free XIn-9(5Al-Zn)-YSn solders”, Mater. Chem. Phy., Vol.53, pp.55-59 (1998).
120.H. Mavoori, J. Chin, S. VAYNMAN, B. Moran, L. Keer, and M. Fine, “Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders”, J. Electron. Mater., Vol.26, pp.783-799 (1997).
121.J.M. Song, G.F. Lan, T.S. Lui, and L.H. Chen, “Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys”, Scrip. Mater., Vol.48, pp.1047-1051 (2003).
122.林靖翔,“錫鋅銀鋁(鉍/銦)無鉛銲錫的熱性質、潤濕行為與顯微結構之研究”,南台科技大學機械工程學系,碩士論文,(2006)。
123.ASTM A370-08a Standard Test Methodsand Definitions for Mechanical Testing of Steel Products.
124.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 1, p. 117 (1990).
125.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 1, p. 215 (1990).
126.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ASM International, Vol. 1, p. 813 (1990).
127.C.M. Chung, T.S. Lui, and L.H. Chen, “Effect of aluminum addition on tensile properties of natural aged Sn-Zn eutectic solder”, Journal of Materials Science, Vol. 37, pp. 191-195 (2002).
128.G.W. Powell, S.E. Mahmoud, and K. Mills edit., “Metals Handbook”, 9th edn, Vol. 8, Metals Park (OHIO): ASM International, pp. 20-29 (1986).
129.G.W. Powell, S.E. Mahmoud, and K. Mills edit., “Metals Handbook”, 9th edn, Vol. 8, Metals Park (OHIO): ASM International, pp. 12-17 (1986).
130.L.C Prasad, and A. Mikula, “Role of surface properties on the wettability of Sn–Pb–Bi solder alloys”, Journal of Alloys and Compounds, Vol. 282, pp. 279-285 (1999).
131.J. Zhou, Y.Sun, and F. Xue, “Properties of low melting point Sn–Zn–Bi solders”, Journal of Alloys and Compounds, Vol. 397, pp. 260-264 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊