跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳尚恩
研究生(外文):Shang-En Wu
論文名稱:聚焦離子束應用於規則化排列半導體奈米材料及奈米元件製作之可行性研究
論文名稱(外文):Focused Ion Beam-Based Fabrication of Arrayed Semiconductor Nanomaterials and Nanodevices
指導教授:劉全璞
指導教授(外文):Chuan-Pu Liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:92
中文關鍵詞:奈米尖端奈米製作濕式蝕刻位置控制準直奈米結構奈米棒
外文關鍵詞:nanorodsnanotipsnanofabricationaligned nanostructureslocation controlwet etching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究提供了一種刻意改變聚焦離子束(FIB)像差的圖形化方法,能夠快速置備出規則排列的矽/氮化鎵島狀陣列,而毋須任何遮罩、光阻及蝕刻步驟。具有極度像差(astigmatism)及離焦(defocus)的離子束,依程度不同可以直接地刻寫出不同形狀及尺寸的矽/氮化鎵陣列化奈米結構。由一系列的掃瞄式電子顯微影像觀察FIB所刻寫的圖形,可以發現離子束射點(beam spot)的扭曲及擴大。此種製作島狀陣列的方式,較傳統方法省時許多。
經由此一製程,我們在矽基板上可以成功製作出具六方對稱排列的奈米矽島陣列,而在氮化鎵/氮化銦鎵量子井磊晶層上可以偶然地製作出含量子井的柱狀物陣列。在後者的例子當中,有部分的島狀物最後變成柱狀物,肇因於部分p型氮化鎵區域在受到前一波FIB掃瞄後,膨脹成一小團腫塊,而這些腫塊具有抵擋下一波掃瞄的能力,產生類似蝕刻遮罩的效果。這種異常的膨脹經常伴隨著氮的釋出,尤其在掺雜鎂的氮化鎵試片中容易發現;另外,在離子束停駐時間(dwell time)較長時,膨脹也容易產生。這種膨脹現象本身是一種非晶化的行為,一般認為是會對III族氮化物光學性質產生破壞性的影響。
在這些膨脹物經由濕式蝕刻移除後,我們可以得到結晶性良好、且具高深寬比的含量子井奈米柱,尺寸約在30到95奈米。此外我們還發現,此一蝕刻步驟對奈米柱發光性質具有極佳的提升效果,奈米柱單位面積發光強度變為原始試片(尚未圖形化的氮化鎵/氮化銦鎵磊晶試片)的三倍。由拉曼散射光譜分析,進一步證實了奈米柱陣列具有較大的表面積,因而使發光強度提升。高解析穿透式電子顯微鏡更觀察到,經氫氧化鉀溶液處理後的奈米柱,其從頭到尾都是單晶的性質,且其中的量子井結構也完整保存下來。本研究所製備的奈米柱已成功陣列化且缺陷少,具有應用於未來奈米發光二極體的極佳潛力。
In this research, we proposed a new technique for the fast fabrication of well-defined arrays of Si/GaN islands through an intentionally stigmated Ga+ focused ion beam (FIB) without masks, resists or etching. Stigmating and defocusing the ion beam resulted in the direct formation of Si/GaN islands of different shape and size. The effects of beam spot distortion and broadening on the milled structure were also examined by scanning electron microscopy imaging. With this technique, not only was the fabrication time shorter, but also the arrangement of the island arrays was possibly controllable.
Nanometer-sized Si island arrays with hexagonal symmetry were accordingly obtained, whereas nanopillars containing InGaN/GaN multiple quantum wells (MQWs) were intermittently achieved via the similar way. Interestingly, some islands became high-aspect-ratio nanopillars under an adequate degree of defocus, due to the newly developed bumps serving as “etching masks” on the top p-GaN layer. The swelling/amorphization of GaN induced by FIB was live-monitored and could be accounted for the bump/blister formation. The anomalous volume swelling, accompanied by the nitrogen dissociation, was pronounced in more defective samples (doped with Mg), or under conditions with a larger dwell time. Such amorphization phenomenon which could be detrimental to optical properties of III-nitrides, was schematically explained by the beam tail effect.
Furthermore, crystalline MQW nanopillars of diameters ~ 30–95 nm and high aspect ratios were achieved with the removal of the swollen/amorphized layer by means of wet-etching using short duration KOH treatment. A large enhancement of emission intensity of the nanopillars, by a factor up to 3 with an achievable pillar diameter of 30 nm, could be explained due to the larger surface area of the MQW compared with the pristine InGaN/GaN epi-layer sample. Raman scattering studies were used to characterize the nanopillars for the evidence of these newly created surfaces. High resolution transmission electron microscopy showed the single-crystalline nature throughout the KOH treated pillar, as well as the perfection of embedded quantum well structure. Our implementation of these proposed high-quality and arrayed nanopillars implied an alternative way for future nano-sized light emitting diode fabrication.
Table of Contents

List of Tables 3
List of Figures 4
Chapter 1 8
Introduction 8
1.1 Brief Background 8
1.2 Goal of this Study 11
Chapter 2 12
Theory and Literature Review 12
2.1 FIB Working Principles 12
2.1.1 Liquid Metal Ion Sources 12
2.1.2 Profile of an FIB System 14
2.1.3 FIB Milling 16
2.1.4 FIB Imaging 18
2.1.5 FIB-Induced Deposition 20
2.1.6 FIB-Assisted Etching 22
2.2 Related Phenomena Found with FIB 23
2.2.1 Incidence Angle Effect 23
2.2.2 Redeposition Effect 23
2.2.3 Non-Vertical Profile of the Milled Structure 24
2.2.4 Amorphization Effect 24
2.2.5 Effect of Beam Astigmatism 26
2.3 Nanostructures Fabricated with FIB 29
2.4 Other Methods for Making Islands and Nanopillars Compared with FIB 32
Chapter 3 33
Experimental 33
3.1 Flow Chart 33
3.2 Material Growth and Preparation 34
3.3 FIB Procedures 36
3.4 Chemical Etching 41
3.5 Analytical Techniques 42
Chapter 4 43
Results and Discussion, Part 1— Fabrication of Si Nanoisland Arrays by FIB 43
Chapter 5 52
Results and Discussion, Part 2— FIB Nano-Patterning on InGaN/GaN MQW Samples Utilizing a Stigmated and Defocused Beam 52
5.1 Anomalous Formation of InGaN/GaN Nanopillars 52
5.2 Structure and Optical Properties Characterization of the InGaN/GaN Nanopillar 61
5.3 Parameters Affecting the Swelling 66
Chapter 6 69
Results and Discussion, Part 3— Damage Removal of the As-Milled InGaN/GaN MQW Pillars 69
6.1 Damage Removal Effect on the Emission Property of InGaN/GaN MQW Pillars 69
6.2 Damage Removal Effect on the Crystal Property of InGaN/GaN MQW Pillars 75
6.3 Reasons for the Enhanced Luminescence of InGaN/GaN MQW Pillars 79
6.4 Effect of Extending Wet-Etching Time 82
Chapter 7 84
Conclusions 84
7.1 Conclusions of Present Work 84
7.2 Suggestions for Future Study 85
References 87
1L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice (Springer, New York, 2005).
2C. A. Volkert and A. M. Minor, MRS Bulletin 32, 389 (2007).
3H. D. Wanzenboeck, C. Ostermaier, A. Gruen, B. Eichinger, M. Karner, and E. Bertagnolli, Nucl. Instrum. Methods Phys. Res. Sect. B 242, 257 (2006).
4T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, J. Micromech. Microeng. 15, S286 (2005).
5T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, Appl. Phys. Lett. 87, 013103 (2005).
6J. Fujita, S. Okada, R. Ueki, M. Ishida, T. Kaito, and S. Matsui, Jpn. J. Appl. Phys. 46, 6286 (2007).
7S. Kim, M. Ueda, M. Funato, Shigeo Fujita, and Shizuo Fujita, J. Appl. Phys. 97, 104316 (2005).
8A. Perez, L. Bardott, B. Prevel, P. Jensen, M. Treilleux, P. Mélinon, J. Gierak, G. Faini, and D. Mailly, New J. Phys. 4 76.1 (2002).
9J. Kapsa, Y. Robach, G. Hollinger, M. Gendry, J. Gierak, and D. Mailly, Appl. Surf. Sci 226, 31 (2004).
10M. Ueda, S. W. Kim, Shizuo Fujita, and Shigeo. Fujita, Japanese Journal of Applied Physics 43, L652-L654 (2004).
11D. M. Longo, W. E. Benson, T. Chraska, and R. Hull, Appl. Phys. Lett. 78, 981 (2001).
12H. W. Li, D. J. Kang, M. G. Blamire, and W. T. S. Huck, Nanotechnology 14, 220 (2003).
13A. O. Altun, J. H. Jeong, J. J. Rha, K. D. Kim, and E. S. Lee, Nanotechnology 18, 465302 (2007).
14L. W. Chen and Y. L. Wang, Appl. Phys. Lett. 73, 2122 (1998).
15Y. K. Kim, A. J. Danner, and J. J. Raftery, IEEE J. Sel. Top. Quantum Electron. 11, 1292 (2005).
16I. Chyr and A. J. Steckl, MRS Internet J. Nitride Semicond. Res. 4S1, G10.7 (1999).
17C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, Appl. Phys. Lett. 79, 4076 (2001).
18Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, Appl. Phys. Lett. 88, 171103 (2006).
19Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, H. Hopkinson, and A. Tahraoui, J. Vac. Sci. Technol. B 25, 1197 (2007).
20H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, Phys. Status Solidi A 203, 1749 (2006).
21J. Orloff, Rev. Sci. Instrum. 64, 1105 (1993).
22J. Cheng and A. J. Steckl, J. Vac. Sci. Technol. B 19, 2551 (2001).
23S. Reyntjens and R. Puers, J. Micromech. Microeng. 11, 287 (2001).
24M. Itou, M. Kasai, T. Kimura, J. Yanagisawa, F. Wakaya, Y. Yuba, and K. Gamo, Nucl. Instrum. Methods Phys. Res. B 206, 1013 (2003).
25D. Petit, C. C. Faulkner, S. Johnstone, D. Wood, and R. P. Cowburn, Rev. Sci. Instrum. 76, 026105 (2005).
26A. J. Steckl and I. Chyr, J. Vac. Sci. Technol. B 17, 362 (1999).
27H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, Eur. Phys. J. B 48, 291 (2005).
28A. A. Tseng, Small 1, 924 (2005).
29M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu, and J. M. Rorison, IEEE J. Sel. Top. Quantum Electron. 11, 1266 (2005).
30W. C. L. Hopman, F. Ay, W. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. Ridder, Nanotechnology 18, 195305 (2007).
31Y. Fu, N. K. A. Bryan, and W. Zhou, Opt. Express 12, 227 (2004).
32L. Frey, C. Lehrer, and H. Ryssel, Appl. Phys. A 76, 1017 (2003).
33A. Lugstein, B. Basnar, G. Hobler, and E. Bertagnolli, J. Appl. Phys. 92, 4037 (2002).
34D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, J. Vac. Sci. Technol. B 21, 2334 (2003).
35D. Litvinov and S. Khizroev, Nanotechnology 13, 179 (2002).
36H. W. Li, D. J. Kang, M. G. Blamire, and W. T. S. Huck, Nanotechnology 14, 220 (2003).
37M. Koh, S. Sawara, T. Shinada, T. Goto, Y. Ando, and I. Ohdomari, Appl. Surf. Sci 162-163, 599 (2000).
38M. Kuball, M. Benyoucef, F. H. Morrissey, and C. T. Foxon, MRS Internet J. Nitride Semicond. Res. 5S1, W12.3 (2000).
39T. Ishikawa, S. Kohmoto, and K. Asakawa, Appl. Phys. Lett. 73, 1712 (1998).
40E. S. Kim, N. Usami, and Y. Shiraki, Semicond. Sci. Technol. 14, 257 (1999).
41X. Mei, D. Kim, and H. E. Ruda, Appl. Phys. Lett. 81, 361 (2002).
42W. C. Moon, T. Yoshinobu, and H. Iwasaki, Japan J. Appl. Phy. 38, 483 (1999).
43S. Kohmoto, H. Nakamura, T. Ishikawa, and K. Asakawa, Appl. Phys. Lett. 75, 3488 (1999).
44A. Hirai and K. M. Itoh, Physica E 23, 248 (2004).
45H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, Science 319, 445 (2008).
46S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, U. K. Mishra, J. Appl. Phys. 100, 054314 (2006).
47T. H. Hsueh, H.W. Huang, F. I. Lai, J. K. Sheu, Y. H. Chang, H. C. Kuo, S. C. Wang, Nanotechnology 16, 448 (2005).
48Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen, C. G. Fonstad, Appl. Phys. Lett. 86, 071917 (2005).
49W. Han, S. Fan, Q. Li, Y. Hu, Science 277, 1287 (1997).
50M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys, D. J. Stokes, P. H. Clifton, A. Cerezo, Appl. Phys. Lett. 90, 061903 (2007).
51M. Kuball, F. H. Morrissey, M. Benyoucef, I. Harrison, D. Korakakis, C. T. Foxon, Phys. Status Solili A 176, 355 (1999).
52D. A. Stocker and E. F. Schubert, Appl. Phys. Lett. 73, 2654 (1998).
53R. M. Langford and A. K. Petford-Long, J. Vac. Sci. Technol. A 19, 2186 (2001).
54C. R. Perrey, C. B. Carter, J. R. Michael, P. G. Kotula, E. A. Stach, and V. R. Radmilovic, J. Microscopy 214, 222 (2004).
55Z. Wang, T. Kato, T. Hirayama, N. Kato, K. Sasaki, and H. Saka, Applied Surface Science 241, 80 (2005).
56A. A. Tseng, J. Micromech. Microeng. 14, R15 (2004).
57A. Motayed, A. V. Davydov, M. D. Vaudin, I. Levin, J. Melngailis, and S. N. Mohammad, J. Appl. Phys. 100, 024306 (2006).
58S. Dhara, A. Datta, C. T. Wu, K. H. Chen, Y. L. Wang, S. Muto, T. Tanabe, C. H. Shen, C. W. Hsu, L. C. Chen, and T. Maruyama, Appl. Phys. Lett. 86, 203119 (2005).
59C. Y. Nam, J. Y. Kim, and J. E. Fischer, Appl. Phys. Lett. 86, 193112 (2005).
60S. O. Kucheyev, J. S. Williams, J. Zou, C. Jagadish, and G. Li, Appl. Phys. Lett. 77, 3577 (2000).
61H. S. Chen, D. M. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S. Wu, and C. D. Chen, Nanotechnology 17, 1454 (2006).
62A. Ingale, S. Pal, V. K. Dixit, and P. Tiwari, J. Nanosci. Nanotechnol. 7, 2186 (2007).
63Z. Y. Fan, J. Y. Lin, and H. X. Jiang, J. Phys. D: Appl. Phys. 41, 094001 (2008).
64K. Furuya and T. Saito, J. Appl. Phys. 80, 1922 (1996).
65L. Xia, W. Wu, Y. Hao, Y. Wang, and J. Xu, 88, 152108 (2006).
66M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).
67I. M. Templeton and H. G. Champion, J. Vac. Sci. Technol. B 13, 2603 (1995).
68L. Frey, C. Lehrer, and H. Ryssel, Appl. Phys. A 76, 1017 (2003).
69A. Lugstein, B. Basnar, G. Hobler, and E. Bertagnolli, J. Appl. Phys. 92, 4037 (2002).
70T Azuhata, T Sota:, K Suzuki, and S. Nakamura, J. Phys.: Condens. Matter 7, L129 (1995).
71Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen, and C. G. Fonstad, Appl. Phys. Lett. 86, 071917 (2005).
72A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, Phys. Rev. B 72, 155336 (2005).
73M. R. Correia, S. Pereira, E. Pereira, J. Frandon, and E. Alves, Appl. Phys. Lett. 83, 4761 (2003).
74S. Lazić, M. Moreno, J. M. Calleja, A. Trampert, K. H. Ploog, F. B. Naranjo, S. Fernandez, and E. Calleja, Appl. Phys. Lett. 86, 061905 (2005).
75H. Grille, C. Schnittler, and F. Bechstedt, Phys. Rev. B 61, 6091 (2000).
76D. Alexson, L. Bergman, R. J. Nemanish, M. Dutta, M. A. Stroscio, C. A. Parker, S. M. Bedair, N. A. El-Masry, and F. Adar, J. Appl. Phys. 89, 798 (2001).
77S.P.S. Porto and R.S. Krishnan, J. Chem. Phys. 47, 1009 (1967).
78L. Dai, B. Zhang, J.Y. Lin, and H. X. Jiang, J. Appl. Phys. 93, 4951 (2001).
79H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, R. W. Martin, and S. Tripathy, J. Appl. Phys. 93, 5978 (2003).
80H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys. Lett. 78, 1303 (2001).
81H. W. Choi, M. D. Dawson, P. R. Edwards, and R. W. Martin, Appl. Phys. Lett. 83, 4483 (2003).
82S. O. Kucheyev, J. S. Williams, J. Zou, S. J. Pearton, and Y. Nakagawa, Appl. Phys. Lett. 79, 602 (2001).
83S. O. Kucheyev, J. S. Williams, J. Zou, and C. Jagadish, J. Appl. Phys. 95, 3048 (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top