跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周信宏
研究生(外文):Hsin-Hung Chou
論文名稱:應用硝酸銀水溶液與噴墨技術製備一維及二維導電結構之研究
論文名稱(外文):Application of Silver Nitrate Water-based Solution and Inkjet Printing in the Fabrication of 1-D and 2-D Electronically Conductive Structures
指導教授:黃文星黃文星引用關係
指導教授(外文):Weng-Sing Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:90
中文關鍵詞:噴墨製程微導線導電薄膜硝酸銀水溶液液滴觀測
外文關鍵詞:Silver nitrate water-based solutionDroplet observationMicro-conductive lineConductive thin-filmInkjet printing process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去數十年,微電子製造產業為了提升目前製程上的效率,與元件發展日益精細化的訴求下,直接製造技術中噴墨製程有效改善了傳統微影蝕刻製程低效率、光罩消耗及網印技術解析度不足等缺失而受到注目。透過電腦輔助控制與參數直接調整,將所需的材料直接噴覆於特定的位置點上,具有方便的操控性且減少材料利用上的浪費,讓生產效率大幅度提升。此外,以金屬前驅物溶液作為噴墨材料的使用,能避免奈米金屬懸浮溶液之熱處理不完全,而產生部分保護劑殘留的問題,更適合應用於導電結構之噴印研究。
本研究應用濃度1 M及5 M硝酸銀水溶液進行液滴飛行觀測及一維微導線與二維導電薄膜之研究。於液滴觀測方面,濃度1 M及5 M之穩定操作電壓範圍分別介於±22 - ±26 V與±25 - ±28 V;微液滴大小均約為27 μm。對於噴覆濃度1 M之硝酸銀水溶液,於基板溫度90℃,液滴間距為20及30 μm條件下,可噴印出連續且均勻之微導線結構,但由於溶質濃度不高而無法順利噴印出均勻導電薄膜型態。本研究為了改善濃度1 M之噴印品質,且避免於高溫基板溫度下所造成的不穩定噴墨過程,而將硝酸銀水溶液濃度提升至5 M來進行觀測。可在基板溫度25 - 90℃,液滴間距為20及30 μm,噴印出連續且均勻之微導線結構,其線寬介於76.1 - 99.9 μm。對於噴覆二維導電薄膜而言,選用基板溫度25℃,液滴間距為10 μm來進行噴印配製,可得最緻密處之最佳電阻率為1.9 x 10-6 Ω•cm。此外,本研究亦進行其他圖案之噴印製作,給予實際應用提供無限可能。
Over the past ten years, it is in demand for the microelectronics industry to raising their manufacturing efficiency and refining the developments of the elemental electronics components, hence the many attentions given to the direct writing inkjet printing technologies. This technique could effectively improve the efficiency of conventional photolithographic process, mask consuming, and low resolution of screen printing technology. Materials can be deposited only at the desired locations using computer aided controls to enable convenient operation as well as less material wastage, consequently making the process more effective and efficient. Moreover, using metal precursor solution as the printing materials can avoid the problem of some protecting agent remaining due to incomplete thermal treatment, and it is more suitable for the application of printing conductive structures.
Silver nitrate water-based solution of 1 M and 5 M concentrations were employed in this study for observing droplets evolution during ink-jetting and constructing 1-D and 2-D micro-conductive patterns. During droplets observation, stable driving voltage ranges for the 1 M and 5 M solutions were found to be ±22 - ±26 volt and ±25 - ±28 volt respectively; where the resulting average micro-droplets size was about 27 μm for both concentrations. When printing with the 1 M silver nitrate, a continuous and uniform micro-conductive 1-D line pattern could be formed at a substrate temperature of 90℃ and step sizes of 20 μm and 30 μm. However, the conductive thin-films could not be formed successfully due to the low solute concentration. This study has attempted to improve the printing quality of 1 M solution and avoid the instable ejection process by introducing the higher concentration solution. Continuous and uniform micro-conductive lines were produced at substrate temperatures of 25 - 90℃ in step sizes of 20 μm and 30 μm; the average width of lines were about 76.1 - 99.9 μm. The 2-D conductive thin-films were printed at a substrate temperature of 25℃ and step size of 10 μm measured a best specific resistance at densest spaces to be about 1.9 x 10-6 Ω•cm. In addition, other special patterns were printed in this study to show the infinite potential for real life applications.
中文摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
第二章 文獻回顧 4
2-1 直接輸出技術 4
2-1-1 聚焦離子束製程技術 4
2-1-2 微印刷技術 5
2-1-3 雷射直接成像技術 5
2-1-4 微液滴噴墨技術 6
2-2 微液滴噴墨技術之演進 6
2-3 微液滴噴墨技術之原理 7
2-3-1 連續式與自控式噴墨模式 7
2-3-2 壓電式噴頭之噴墨原理 9
2-4 噴墨材料之選擇 9
2-4-1 奈米銀懸浮溶液 9
2-4-2 金屬前驅物溶液 10
2-4-3 其他噴墨材料 10
2-5 微液滴飛行型態 11
2-6 噴墨遭遇之問題 12
2-6-1 溶液內含物質之影響 13
2-6-2 添加微細粉體之影響 13
2-6-3 噴嘴處之沾墨問題 13
2-6-4 噴嘴內之氣泡產生 14
2-6-5 環狀結構現象 14
2-7 各參數對噴墨之影響 15
2-7-1 波形種類與脈衝電壓 15
2-7-2 墨水性質 17
2-7-3 基板溫度 17
2-7-4 液滴間距 17
2-8 噴墨技術之應用 18
2-8-1 無線射頻辨識 18
2-8-2 薄膜電晶體液晶顯示器 19
2-8-3 太陽能之透明導電材料 19
2-8-4 可撓式彩色濾光片 20
2-8-5 軟性電子 20
2-9 研究目的與內容 21
第三章 實驗方法與步驟 31
3-1 實驗儀器與原理 31
3-2 材料分析設備 32
3-3 實驗材料與參數設定 33
3-3-1 實驗之噴墨溶液 33
3-3-2 波形設定及噴印參數 33
3-4 基板表面的前處理 34
3-5 噴墨圖案之乾燥與熱處理 34
3-6 實驗方法及流程 34
第四章 結果與討論 40
4-1 液滴觀測 40
4-2 直線圖案之噴覆結果 43
4-2-1 體積莫耳濃度1 M之硝酸銀水溶液 43
4-2-2 體積莫耳濃度5 M之硝酸銀水溶液 45
4-3 連續薄膜之噴覆及其燒結情形 46
4-4 薄膜之電性量測 47
4-5 特殊圖案之噴覆應用 49
第五章 結論 81
第六章 未來工作 83
參考文獻 84
J. Bharathan and Y. Yang, “Polymer Electroluminescent Devices Processed by Inkjet Printing: I. Polymer Light-Emitting Logo,” Applied Physics Letters, 72, 1994, pp. 2660-2662
D.Y. Lee, Y.S. Shin, S.E. Park, T.U Yu and J. Hwang, “Electrohydrodynamic Printing of Silver Nanoparticles by Using a Focused Nanocolloid Jet”, Applied Physics Letters, 90, 2007, pp. 081905.1-081095.3
K.S. Chou, K.C. Huang and H.H. Lee, “Fabrication and Sintering Effect on the Morphologies and Conductivity of Nano-Ag Particle Films by the Spin Coating Method”, Nanotechnology, 16, 2005, pp. 779-784
E. Tekin, B.J. de Gans and U.S. Schubert, “Ink-jet Printing of Polymers - from Single Dots to Thin Film Libraries”, Journal of Materials Chemistry, 14, 2004, pp. 2627-2632
D. Kim and J. Moon, “Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics”, Electrochemical and Solid-State Letters, 8, 2005, J30-J33
R. Terrill, IEEE Aerospace Applications Conference Proceedings (Proceedings of the 1997 IEEE Aerospace Conference, 3, Snowmass Village, CO, 1997), 1997, pp. 481-488
K.H. Church, C. Fore and T. Feeley, “Commercial Applications and Review for Direct Write Technologies”, Materials Research Society, 624, 2000, pp. 3-8
M. Leufgen, A. Lebib, T. Muck, U. Bass, V. Wagner, T. Borzenko, G. Schmidt, J. Geurts and L. W. Molenkamp, “Organic Thin-film Transistors Fabricated by Microcontact Printing”, Applied Physics Letters, 84, 2004, pp. 1582-1584
R. Parashkov, E. Becker, T. Riedl, H.H. Johannes and W. Kowalsky, “Large Area Electronics Using Printing Methods”, Proceedings of the IEEE, 93, 2005, pp. 1321-1329
J.L. Wilbur, A. Kumar, E. Kim and G.M. Whitesides, “Microfabrication by Microcontact Printing of Self-assembled Monolayers,” Advanced Materials, 6, 1994, pp. 600-604
T. Sutter, “An Overview of Digital Printing for Advanced Interconnect Applications”, Circuit World, 31, 2005, pp. 4-9
R. Barbucha, M. Kocik, J. Mizeraczyk, G. Koziol and J. Borecki, “Laser Direct Imaging of Tracks on PCB Covered with Laser Photoresist”, Bulletin of the Polish Academy of Sciences, 56, 2008, pp. 17-20
F. Savart, “Mémoire sur la constitution des veines liquides lancées par des orifices circu-. laires en mince paroi”, Annales de Dhimie et de Physique, 53, 1833, pp. 377-386
R.G. Sweet, “High Frequency Recording with Electrostatically Deflected Ink Jets”, Review of Scientific Instrument, 36, 1965, pp. 131-136
A.M. Lewis and A.D. Brown, “Electrically Operated Character Printer”, United States Patent, 1967, 3298030
R.D. Hansell, “Jet Sprayer Actuated by Supersonic Waves”, United States Patent, 1950, 2512743
K.F. Teng and R.W. Vest, “Metallization of Solar Sells with Ink Jet Printing and Silver Metallo-organic inks”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 11, 1998, pp. 291-297
S.B. Fuller and J. Jacobson, “Ink Jet Fabricated Nanoparticle MEMS”, (Proceedings of the IEEE Conference on Micro-Electromechanical Systems), 2000, pp. 138-141
S.B. Fuller, E.J. Wilhelm and J.M. Jacobson, “Ink-jet printing Nanoparticle Microelectromechanical Systems”, Journal of Microelectro Mechanical Systems, 11, 2002, pp. 54-60
Q. Liu and M. Orme, “High Precision Solder Droplet Printing Technology and the State-of-the-art,” Journal of Materials Processing Technology, 115, 2001, pp. 271-283
P. Buffat and J.P. Borel, “Size Effect on the Melting Temperature of Gold Particles”, Physical Review. A, 13, 1976, pp. 2287-2298
J.H. Yu, S.Y. Kim and J. Hwang, “Effect of Viscosity of Silver Nanoparticle Suspension on Conductive Line Patterned by Electrohydrodynamic Jet Printing”, Applied Physics A, 89, 2007, pp. 157–159
M.H. Tsai and W.S. Hwang, “Effects of Pulse Voltage on the Droplet Formation of Alcohol and Ethylene Glycol in a Piezoelectric Inkjet Printing Process with Bipolar Pulse”, Materials Transactions, 49, 2008, pp. 331-338
T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus and R.H. Friend, “Inkjet Printing of Polymer Thin Film Transistors”, Thin Solid Films, 438-439, 2003, pp. 279-287
D. Wallace, D. Hayes, T. Chen, V. Shah, D. Radulescu, P. Cooley, K. Wachtler and A. Nallani, “Ink-jet as a MEMS Manufacturing Tool”, (Proceedings of the SMTA's Pan Pacific Microelectronics Symposium, Hawaii), 2006, pp. 17-19
K. Yamaguchi, K. Sakai, T. Yamanaka and T. Hirayama, “Generation of Three-dimensional Micro Structure Using Metal Jet”, Precision Engineering, 24, 2000, pp. 2-8
J.F. Dijksman, “Hydrodynamics of Small Tubular Pumps”, Journal of Fluid Mechanics, 139, 1984, pp. 173-191
B. Beulen, J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff and R. van Dongen, “Flows on the Nozzle Plate of an Inkjet Printhead”, Experiments in Fluids, 42, 2007, pp. 217-224
J.D. Jong, R. Jeurissen, H. Borel, M.V.D. Berg, H. Wijshoff, H. Reinten, M. Versluis, A. Prosperetti and D. Lohse, “Air Entrapment in Piezo-driven Inkjet Printheads”, The Journal of the Acoustical Society of America, 120, 2006, pp. 1257-1265
R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel and T.A. Witten, “Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops”, Nature, 389, 1997, pp. 827-829
R.D. Deegan, “Pattern Formation in Drying Drops”, Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61, 2000, pp. 475-485
T. Cuk, S.M. Troian, C. Min Hong and S. Wagner, “Using Convective Flow Splitting for the Direct Printing of Fine Copper Lines”, Applied Physics Letters, 77, 2000, pp. 2063-2065
P.J. Smith, D.Y. Shin, J.E. Stringer, B. Derby and N. Reis, “Direct Ink-jet Printing and Low Temperature Conversion of Conductive Silver Patterns”, Journal of Materials Science, 41, 2006, pp. 4153-4158
B.J. de Gans and U.S. Schubert, “Inkjet Printing of Well-Defined Polymer Dots and Arrays”, Langmuir, 20, 2004, pp. 7789-7793
E. Tekin, B.J. de Gans and U.S. Schubert, “Ink-jet Printing of Polymers: From Single Dots to Thin Film Libraries”, Journal of Material Chemistry, 14, 2004, pp. 2627-2632
.J. Perelaer, B.J. de Gans and U.S. Schubert, “Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks”, Advanced Materials, 18, 2006, pp. 2101-2104
.S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet and D. Poulikakos, “All-inkjet-printed Flexible Electronics Fabrication on a Polymer Substrate by Low-temperature High-resolution Selective Laser Sintering of Metal Nanoparticles”, Nanotechnology, 18, 2007, pp.345202.1-345202.8
.D. Kim, S. Jeong, S. Lee, B.K. Park and J. Moon, “Organic Thin Film Transistor Using Silver Electrodes by the Ink-jet Printing Technology”, Thin Solid Films, 515, 2007, pp. 7692-7696
A.U. Chen and O.A. Basaran, "A New Method for Significantly Reducing Drop Radius Without Reducing Nozzle Radius in Drop-on-Demand Drop Production", Physics of fluids, 14, 2002, pp. L1-L4
E.R. Lee, “Microdrop Generation”, CRC Press LLC, 2003, pp. 59 - 67
H.Y. Son, J.W. Nah and K.W. Paik, “Formation of Pb/63Sn Solder Bumps Using a Solder Droplet Jetting Method”, IEEE Transactions on Electronics Packaging Manufacturing, 28, 2005, pp. 274-281
H. Dong and W.W. Carr, “An Experiment Study of Drop-on-demand Drop Formation”, Physics of Fluids, 18, 2006, pp. 072102.1-072102.16
D. Kim, S. Jeong, B.K. Park and J. Moon, “Direct Writing of Silver Conductive Patterns: Improvement of Film Morphology and Conductance by Controlling Solvent Compositions”, Applied Physics Letters, 89, 2006, pp. 264101.1-264101.3
H. Jiang, K.S. Moon, J. Lu and C.P. Wong, “Conductivity Enhancement of Nano Silver-Filled Conductive Adhesives by Particle Surface Functionalization”, Journal of Electronic Materials, 34, 2005, pp. 1432-1439
D. Kim and J. Moon, “Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics”, Electrochemical and Solid-State Letters, 8, 2005, pp. J30-J33
S. Molesa, D.R. Redinger, D.C. Huang and V. Subramanian, “High-quality Inkjet-printed Multilevel Interconnects and Inductive Components on Plastic for Ultra-low-cost RFID Applications”, Materials Research Society Symposium Proceedings, 769, 2003, pp. H8.3.1-H8.3.6
D. Redinger, S. Molesa, S. Yin, R. Farschi and V. Subramanian, “An Ink-jet-Deposited Passive Component Process for RFID”, IEEE Transactions on Electron Devices, 51, 2004, pp. 1978-1983
M.H. Tsai, H.H. Chou, W.S. Hwang and P.H. Hsieh, “Fabrication of Conductive Patterns by Inkjet Printing of Silver Nano-suspension”, (Proceedings of the IMAPS/ACerS 4th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT), Munich, Germany ), 2008, pp. 21-24
J. Xiang, P. Zhu, Y. Masuda and K. Koumoto, "Fabrication of Self-assembled Monolayers (SAMs) and Inorganic Micropattern on Flexible Polymer Substrate", Langmuir, 20, 2004, pp. 3278-3283
M.H. Tsai, W.S. Hwang, H.H. Chou and P.H. Hsieh, “Effects of Pulse Voltage on Inkjet Printing of A Silver Nanopowder Suspension”, Nanotechnology, 19, 2008, pp. 335304.1-335304.9
Z. Liu, Y. Su and K. Varahramyan, “Inkjet-printed Silver Nitrate Ink and their Electrical Contacts with Conducting Polymers”, Thin Solid Film, 478, 2005, pp. 275-279
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top