跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱志祥
研究生(外文):Chih-Hsiang Chu
論文名稱:以奈米銀顆粒作為催化劑成長氧化鋅奈米結構之研究
論文名稱(外文):Fabrication of ZnO Nanostructures by Using Silver Nanoparticles as Catalysts
指導教授:陳引幹陳引幹引用關係
指導教授(外文):In-Gann Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:127
中文關鍵詞:奈米柱氧化鋅銀奈米顆粒
外文關鍵詞:ZnOAg nanoparticlesnanorods
相關次數:
  • 被引用被引用:1
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用直徑4nm之銀奈米顆粒作為催化劑,將鋅粉作為前驅物以鋅蒸氣氧化法在760torr、500oC下,成功成長氧化鋅奈米柱。探討製程參數對氧化鋅沉積形貌、大小、織構因子(texture coefficient)與發光性質之影響。
當氧氣濃度變化自10~106ppm,氧化鋅奈米柱皆具高度優選取向,退火後之綠光發光強度與其直徑成正相關。總壓自760torr降至60torr,氧化鋅形貌由柱狀變為線狀,其(002)織構因子值與總壓成正相關;氧缺陷濃度與總壓成負相關。
當鋅蒸氣累積時間等於持溫時間時(60min),沉積之奈米柱直徑較大,(002)織構因子達0.98之高方向性,且結晶性佳,氧缺陷濃度低。隨持溫時間增加,插入型氧原子缺陷增加,使綠光發光位置有紅移現象(490-493nm)。
此外,以自控式壓電噴墨設備選區批覆催化劑,驗證本研究中成長氧化鋅奈米柱之反應機制。有催化劑與無催化劑批覆處,氧化鋅奈米柱面積覆蓋率分別為76.3%與18.2%。研判本製程之三個可能反應機制為:鋅氧原子直接反應、銀催化反應與鋅自催化反應。
銀催化劑濃度增加,使氧化鋅奈米柱直徑增加。當銀濃度為0.5~1wt%時,奈米柱具高度方向性。銀濃度20wt%時,由氧缺陷造成之490nm綠光發光強度最低。基板選擇部分,以SEM觀察結果,基板材料與氧化鋅晶格不匹配度主要影響其奈米柱成長。經TEM分析得知不同氧化鋅奈米結構,其成長方向皆為[002]且多為單晶結構。
彙整本研究中各參數條件下所成長之氧化鋅沉積形貌,並繪製成“製程參數條件對氧化鋅成長形貌圖”。
In these present investigations, ZnO nanorods were fabricated under a pressure of 760torr and at a temperature of 500oC using Zn vapor oxidation technique with Zn source and Ag nanoparticles (4nm-size) suspension as catalyst. The influence of the process parameters to the morphologies, sizes, texture coefficient (TC) and luminescence of ZnO nanorods were discussed.
It is observed that ZnO nanorods were highly orientated when oxygen concentration is varied from10 to 106ppm. Green-emission intensity is also found to be increased with the increase in diameter of ZnO nanorods after annealing. It is also noted that the morphologies of ZnO nano rods vary with the applied pressure. When the total pressure is decreased from 760 to 60torr, the morphologies of ZnO nanostructures changed from rod-like to wire-like structures. The TC(002) of ZnO nanostructures had positive correlation with total pressure. Oxygen defect concentration is also increased due to the decrease in total pressure.
The longer accumulated time of Zn vapor(60min) is observed which can lead to the bigger in diameter and volume, higher orientated, better crystalline and lower oxygen defect concentration of ZnO nanorods. The green-emission location is shifted to the longer wavelength (490-493nm) region due to increase of holding time with more oxygen interstitial defects.
Besides, Ag catalyst was coated at selected area by using “Table-Top Printing Platform” to prove the mechanism of growing ZnO nanorods. The area coverage of ZnO nanorods were 76.3% and 18.2% with and without catalyst, respectively. According to the result, three possible mechanisms for growing ZnO nanorods were proposed in our experiments:Zn reacts with oxygen atoms directly, Ag catalyses, Zn self-catalytic.
The diameter of ZnO nanorods increases with increasing concentration of Ag catalyst and ZnO nanorods were highly orientated for 0.5~1wt% concentration of Ag catalyst. The lowest intensity of green-light was emitted for 20wt% of Ag catalyst concentration. The SEM images showed that the lattice mismatch would affect the growth direction more than the diameter of ZnO nanorods. From the result of TEM, it is evidenced that the ZnO nanorods were single crystal and growing toward [002] direction.
All the morphologies of ZnO nanostructures in our experiments were complied into a figure called “ Morphologies of ZnO nanostructures subsequent to diversified parameters of process”
摘要 I
Abstract II
總目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 實驗動機與目的 1
第二章 理論基礎與文獻回顧 3
2.1奈米材料的基本定義 3
2.2奈米材料的基本特徵 4
2.3 氧化鋅基本性質 5
2.3.1晶體結構 5
2.3.2壓電性質與表面極性 6
2.3.3能帶結構與光致發光性質 6
2.3.4成長方向 7
2.3.5氧化鋅的成核與成長 9
2.3.6氧化鋅奈米結構之成長形貌圖 11
2.4 合成一維奈米材料的機制 12
2.4.1 氣-固反應機制 VS (Vapor-Solid) 12
2.4.2 氣-液-固反應機制 VLS (Vapor-Liquid-Solid) 13
2.4.3 溶液-液-固反應機制 SLS (Solution-Liquid-Solid) 14
2.4.4 固-液-固反應機制 SLS (Solid-Liquid-Solid) 14
2.4.5 氧化物促進成長 (Oxide assisted growth) 15
2.5 合成一維奈米材料的方法 16
2.5.1電化學沉積法(Electrochemical deposition) 16
2.5.2熱揮發法(Thermal evaporation) 17
2.5.3鋅蒸氣氧化法(Zinc vapor oxidation) 17
2.5.4有機金屬化學氣相沉積法 (Metel-Organin chemical vapor phase deposition) 18
2.6不同形貌之氧化鋅奈米結構 18
2.6.1 氧化鋅奈米帶(Nanobelt) 19
2.6.2 氧化鋅奈米柱(Nanorod) 19
2.6.3 氧化鋅四腳消波塊(Tatrapod) 20
第三章 實驗流程與儀器設備 38
3.1 實驗流程 38
3.1.1 基板與原料準備 38
3.1.2 成長氧化鋅奈米結構 39
3.2 各項實驗參數設計 41
3.2.1對照實驗 41
3.2.2 探討成長氧化鋅奈米結構的熱力學影響 41
3.2.3 探討成長氧化鋅奈米結構的動力學影響 42
3.2.4 成長氧化鋅奈米結構之機制探討 43
3.2.5 催化劑濃度與基板對於成長氧化鋅奈米結構之影響 43
3.2.6 不同形貌的氧化鋅奈米結構 45
3.3 材料性質分析鑑定與設備 45
第四章 實驗結果與討論 54
4.1與文獻比較之對照實驗 54
4.2 探討成長氧化鋅奈米結構的熱力學影響 58
4.2.1氧氣濃度於成長氧化鋅奈米結構的影響 58
4.2.2總壓對於氧化鋅奈米結構之成長情形 63
4.3 探討成長氧化鋅奈米結構的動力學影響 65
4.3.1鋅蒸氣累積時間對於氧化鋅奈米結構的影響 65
4.3.2持溫時間對氧化鋅奈米結構影響 68
4.4 氧化鋅奈米結構之成長機制探討 71
4.4.1催化劑存在對成長氧化鋅奈米結構影響 71
4.4.2氧化鋅奈米柱成長機制探討 72
4.5 不同催化劑濃度與基板對成長氧化鋅奈米結構之影響 74
4.5.1不同催化劑濃度所產生的成核顆粒大小 75
4.5.2不同催化劑濃度的成長結果 76
4.5.3以不同基板成長氧化鋅奈米結構 79
4.6不同形貌之氧化鋅奈米結構 80
4.7製程條件對氧化鋅成長形貌圖繪製 81
第五章 結論 117
[1]Z. Zhang, S. J. Wang, T. Yu and T. Wu, “Controlling the Growth Mechanism of ZnO Nanowires by Selecting Catalysts” Journal of Physical Chemistry C.,111, 17500, (2007).
[2]J. D. Klein, R. D. Herrick, II, D. Palmer, and M. J. Sailor, “Electrochemical Fabrication of Cadmium Chalcogenide Microdiode Arrays” Chemistry of Materials., 5, 902 , (1993).
[3]J. H. Park, Y. J. Choi, J. G. Park, “Synthesis of ZnO nanowires and nanosheets by an O2-assisted carbothermal reduction process” Journal of Crystal Growth., 280, 161, (2005).
[4]S. H. Dalal, D. L. Baptista, K. B. KTeo, R. G. Lacerda, D. A. Jefferson and W. I. Milne, “Controllable growth of vertically aligned zinc oxide nanowires using vapour deposition” Nanotechnology., 17, 4811, (2006).
[5]A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems” Advances in Physics., 51, 799, (2002).
[6]王崇人 中正大學化學系, 科學發展, 354期, (2002).
[7]R. Triboulet, J. Perriere, “Epitaxial growth of ZnO films” Progress in Crystal Growth and Characterization of Materials., 47, 65, (2003).
[8]D. S. King, R. M. Nix, “Thermal Stability and Reducibility of ZnO and Cu/ZnO Catalysts” Journal of Catalysis., 160, 76, (1996).
[9]T. Minami, “New n-Type Transparent Conducting Oxides” Materials Research Society bulletin., 25, 38, (2000).
[10] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, “Optically pumped lasing of ZnO at room temperature” Applied Physics Letters., 70, 2230, (1997).
[11]J. Zhong, A. H. Kitai, P. Mascher, W. Puff, “The Influence of Processing Conditions on Point Defects and Luminescence Centers in ZnO” Journal of The Electrochemical Society., 140, 3644, (1993).
[12]陳一誠.劉旭禎, “一氧化碳感測技術”, 工業材料雜誌, 第227 期, 68, (2005)
[13]B. Meyer, D. Marx, “Density-functional study of the structure and stability of ZnO surfaces” Physical Review B 67, 035403, (2003).
[14]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do an, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices” Journal of Applied Physics., 98, 041301 (2005)
[15]Z. L. Wang, “Zinc oxide nanostructures: growth, properties and Applications” Journal of Physics: Condensed Matter., 16, R829, (2004).
[16]R. A. Powell, W. E. Spicer, J. C. McMenamin, “Photoemission Studies of Wurtzite Zinc Oxide” Physical Review B., 6, 15, (1972)
[17]H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. L. Rhun, R.Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. Gcsele, “Template-Assisted Large-Scale Ordered Arrays of ZnO Pillars for Optical and Piezoelectric Applications” Small., 2, 8, 944, (2006).
[18]W. Gcpel, U. Lampe, “Influence of defects on the electronic structure of zinc oxide surfaces” Physical Review B., 22, 6447. (1980)
[19]B. Lin, Z. Fu, Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates” Applied Physics Letters., 79, 943. (2001)
[20]X. Liu, X. Wu, H. Cao, R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition” Journal of Applied Physics., 95, 3141, (2004)
[21]D. Li, Y. H. Leung, A. B. Djuriši , Z. T. Liu, M. H. Xie, S. L. Shi, S. J.Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods” Applied Physics Letters., 85, 1601, (2004)
[22]A. B. Djurisˇic´, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y.
Kwong, K.W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, C.
Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures” Advanced Functional Materials., 14, 856, (2004).
[23]R.A. Laudise, A.A. Ballman, “Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide” Journal of Physical Chemistry., 64, 688, (1960).
[24]W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin, “Growth mechanism and growth habit of oxide crystals” Journal of Crystal Growth., 203, 186, (1999).
[25]Y. Kajikawa, S. Noda, H. Komiyama, “Preferred Orientation of Chemical Vapor Deposited Polycrystalline Silicon Carbide Films” Chemical vapor deposition., 8, 99, (2002).
[26]H. Z. Zhang, X. C. Sun, R.M. Wang, D. P. Yu, “Growth and formation mechanism of c-oriented ZnO nanorod arrays deposited on glass” Journal of Crystal Growth., 269, 464, (2004).
[27]V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev,2 Yu. B. Samsonenko, and V. M. Ustinov, “Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment” Physical Review B., 71, 205325, (2005).
[28]J. Johansson, C. Patrik T. Svensson, T. Ma°rtensson, L. Samuelson,
and W. Seifert, “Mass Transport Model for Semiconductor Nanowire Growth” Journal of Physical Chemistry B., 109, 13567, (2005).
[29]V.G. Dubrovskii, N.V. Sibirev, “General form of the dependences of nanowire growth rate on the nanowire radius” Journal of Crystal Growth., 304, 504, (2007).
[30]T. Y. Tan, N. Li, and U. Gösele, “Is there a thermodynamic size limit of nanowires grown by the vapor-liquid-solid process?” Applied Physics Letters., 83, 1199, (2003).
[31]J. Song, X. Wang, E. Riedo, and Z. L. Wang, “Systematic Study on Experimental Conditions for Large-Scale Growth of Aligned ZnO Nanwires on Nitrides” Journal of Physical Chemistry B., 109, 9869, (2005).
[32]Z. L. Wang, “Functional Oxide Nanobelts: Materials, Properties and Potential Applications in Nanosystems and Biotechnology” Annual Review of Physical Chemistry., 55, 96, (2004).
[33]R. S. Wagner, W. C. Ellis, “Vapor-Lquid-Solid Mechanism of Single Crystal Growth” Applied Physics Letters., 4, 89, (1964).
[34]Y. Wu, P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth” Journal of the American Chemical Society., 123, 3165, (2001).
[35] T. J. Trentler, K. M. Hickman S. C. Geol, A. M. Viano, P. C. Gibbson, W.E. Buhro, “Soslution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth” Science., 270, 1791, (1995).
[36]D. P. Yu, Y.J. Xing, Q.L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowiresvia a solid-liquid-solid (SLS) mechanism” Physica E. 9, 305, (2001).
[37]M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of Gold-Silica Composite Nanowires through Solid-Liquid-Solid Phase Growth” Journal of Nanoscience and Nanotechnology., 3, 341, (2003).
[38]S. T. Lee, N. Wang, Y. F. Zhang, Y. H. Tang, Materials Research Society Bulletin., 24, 36 (1999).
[39]W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, L. Kalish, S. T. Lee, “Free-standing Single Crystal Silicon Nanoribbons” Journal of the American Chemical Society., 123, 11095 (2001).
[40]S. T. Lee, N. Wang, C. S. Lee, “Semiconductor nanowires: synthesis, structure and properties ” Materials Science and Engineering: A., 286, 16, (2000).
[41]L. vayssieres, “An aqueous solution approach to advanced
metal oxide arrays on substrates” Applied Physics A., 89, 1, (2007).
[42]Z. Li, Y. Xiong, and Y. Xie, “Selective growth of ZnO nanostructureswith coordination polymers” Nanotechnology 16, 2303, (2005).
[43]H. Yan, T. He, J. Pham, and P. Yang, “Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals” Advanced Materials.,15, 403, (2003).
[44]L. Jiang, G. Li, Q. Ji, H. Peng, “Morphological control of flower-like ZnO nanostructures” Materials Letters 61, 1964, (2007).
[45]H. J. Fan, A. S. Barnard, M. Zacharias, “ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling” Applied Physics Letters., 90, 143116, (2007).
[46]T. Ma, M. Guo, M. Zhang, Y. Zhang and X. Wang, “Density-controlled hydrothermal growthof well-aligned ZnO nanorod arrays” Nanotechnology. 18, 035605, (2007).
[47] Y. Li, G. W. Meng, and L. D. Zhang, F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties” Applied Physics Letter., 76, 10, (2000).
[48]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayes, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures:synthesis,Characterization, and Applications” Advanced Materials., 15, 353, (2003).
[49]Z.Wang, H.L. Li, “Highly ordered zinc oxide nanotubules synthesized within the anodic aluminum oxide template” Appl. Phys. A., 74, 201, (2002).
[50]K. Liu, C. L. Chien, P. C. Searson, and K. Y. Zhang, “Structural and magneto-transport properties of electrodeposited bismuth nanowires” Applied Physics Letters., 73, 1436, (1998).
[51]W. I. Park, D. H. Kim, S.-W. Jung, and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods” Applied Physics Letters., 80, 4232, (2002).
[52]Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides” Science., 291, 1947, (2001).
[53]M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts” Journal of Physical Chemistry B.,107 , 659, (2003).
[54]W. L. Hughes and Z. L. Wang, “Nanobelts as nanocantilevers” Applied Physics Letters., 82, 2886, (2003).
[55]E. Comini, G. Faglia, and G. Sberveglieri, Z. Pan and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts”, Applied Physics Letters., 81, 1869, (2002).
[56]X. Y. Kong and Z. L. Wang, “Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts”, Nano Letters., 3, 1625, (2003).
[57]X. Y. Kong, Y. Ding, R. Yang, and Z. Lin Wang, “Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts” Science. 303, 1348, (2004)
[58]T. Sun, J. Qiu and C. Liang, “Controllable Fabrication and Photocatalytic Activity of ZnO Nanobelt Arrays” Journal of Physical Chemistry C., 112, 715, (2008)
[59]W. D. Yu, X. M. Li, and X. D. Gao, “Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates” Applied Physics Letters., 84, 2658, (2004)
[60]Y. Dai, Y. Zhang, Z. L. Wang, “The octa-twin tetraleg ZnO nanostructures” Solid State Communications., 126, 629, (2003)
[61]S. Takeuchi, H. Iwanaga, M. Fujii, “Octahedral multiple-twin model of tetrapod ZnO crystals” Philosophical Magazine A., 69 1125. (1994).
[62]M. Shiojiri, C. Kaito, “Structure and growth of ZnO smoke particles prepared by gas evaporation technique” Journal of Crystal Growth., 52, 173, (1981).
[63]K. Nishio, T. Isshiki, “Structure and growth mechanism of tetrapod-like ZnO particles” Philosophical Magazine A., 76, 889, (1997).
[64]Y. Ding and Z. L. Wang, “Zinc blende ZnO and its role in nucleating wurtzite tetrapods” Microsc Microanal., 13, 730, (2007).
[65]“半導體雷射技術與應用”,工研院材料所編譯, 37943, 6月, (2001).
[66]P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, H. B. Pan, “The electronic structure and spectral properties of ZnO and its defects” Nuclear Instruments and Methods in Physics Research Section B., 199, 286. (2003).
[67]S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr., M. R. Davolos, “Luminescent properties and lattice defects correlation on zinc oxide” Journal of Inorganic Materials., 3, 749. (2001).
[68]D. R. Gaskell, “Introduction to the Thermodynamics of Materials”, Third Edition, (2003).
[69]F. Grønvold, S. Stølen, “Heat capacity of solid zinc from 298.15 to 692.68 K and of liquid zinc from 692.68 to 940 K: thermodynamic function values” Thermochimica Acta., 395, 127, (2003).
[70]J.M. Latterty, “Foundations of Vaccum Science and Technology” (1997).
[71] http://www.crct.polymtl.ca/FACT/documentation/SGTE/
SGTE_Figs.htm
[72]X. Wang, Q. Li, Z. Liu, J. Zhang, Z. Liu and R. Wang, “Low-temperature growth and properties of ZnO nanowires” Applied Physics Letters., 84, 14. (2004).
[73]http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
[74]F. Q. He and Y. P. Zhao, “Growth of ZnO nanotetrapods with hexagonal crown” Applied Physics Letters., 88, 193113, (2006).
[75]P.A. Hu, Y. Q. Liu, L Fu, X. B.Wang, D. B. Zhu, “Creation of novel ZnO nanostructures: self-assembled nanoribbon/nanoneedle junction networks and faceted nanoneedles on hexagonal microcrystals” Applied Physics A., 78, 15, (2004).
[76]R. E.Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles” Thrid Edition.
[77]W. S. Shi, B. Cheng, L. Zhang, E. T. Samulski,“Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions”Journal of Applied Physics., 98, 083502, (2005).
[78]Y. W. Heo, D. P. Norton and S. J. Pearton, “Origin of green luminescence in ZnO thin film grownby molecular-beam epitaxy” Journal of Applied Physics., 98, 073502 , (2005).
[79]H. Y. Dang, J. Wang and S. S. Fan, “The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres” Nanotechnology., 14, 738, (2003).
[80]J. Song, X. Wang, E. Riedo and Z. L. Wang, “Systematic Study on Experimental Conditions for Large-Scale Growth of Aligned ZnO Nanwires on Nitrides” Journal of Physical Chemistry B., 109, 13567, (2005).
[81]H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, “Growth of Epitaxial Nanowires at the Junctions of Nanowalls” Science., 300, 1249, (2003).
[82]H. J. Fan, A. S. Barnard, M. Zacharias, “ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling” Applied Physics Letters., 90, 143116, (2007).
[83]D. Li, Y. H. Leung, A. B. Djurišiæ, Z. T. Liu, M. H. Xie, S. L. Shi, and S. J. Xu, W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods” Applied Physics Letters., 85, 1601, (2004).
[84]P. X. Gao and Z. L. Wang, “Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process” Journal of Physical Chemistry B., 108, 7534, (2004).
[85]S.A. Kukushkin, A.V. Osipov, V.N. Bessolov, B.K. Medvedev, V.K. Nevolin and K.A. Tcarik, “Substrates for Epitaxy of Gallium Nitride: New Materials and Techniques” Reviews on Advanced Materials Science., 17, 1, (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top