(34.201.11.222) 您好!臺灣時間:2021/02/25 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉冠麟
研究生(外文):Kuan-Lin Liou
論文名稱:添加鹼金族碳酸物製備釔鋇鋅氧螢光粉及其發光性質之研究
論文名稱(外文):Synthesis and Photoluminescence of Y2BaZnO5:Eu3+, A+ (A = K, Na, Li) with Alkali Carbonate
指導教授:陳引幹陳引幹引用關係
指導教授(外文):In-gann Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:110
中文關鍵詞:氧空缺紅色螢光粉電荷補償釔鋇鋅氧
外文關鍵詞:charge compensationoxygen vacanciesY2BaZnO5phosphor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以固態反應法製備Y2BaZnO5:Eu3+及Y2BaZnO5:Eu3+, A+ (A = K, Na, Li)螢光粉,並探討鹼金族碳酸物對其粉體性質與光學性質之影響。由DTA-TG及XRD結果得知,Y2BaZnO5之結晶活化能等於283 kJ/mol、晶粒成長活化能等於25.3 kJ/mol。Y2BaZnO5:Eu3+之晶粒尺寸隨著Eu3+掺雜濃度增加而減小;K2CO3具有助融劑(flux)的功能。當Li+添加濃度20 mol%時,非對稱指數約為2.8。
  UV-vis與PLE顯示Y2BaZnO5:Eu3+, A+添加一價離子作為受體添加,以產生氧空缺的方式達到電荷補償效應,因此氧空缺的濃度會隨之增加,並提升468 nm激發626 nm紅光之效率達62.3%;以395 nm激發Y2BaZnO5:Eu3+, 0.0125Na+有最強發光強度為Y2BaZnO5:Eu3+的1.25倍;另外,氧空缺可減緩發光之衰減速率(衰減時間從0.74 ms延長至0.886 ms)。以468 nm激發Y2BaZnO5:Eu3+, A+螢光粉,其主波長範圍591~596 nm,當鹼金族離子濃度增加時,其主波長有藍位移現象發生,最佳色純度可達94%。在改善藍光LED搭配黃色螢光粉混光系統之演色性實驗,由於兩種螢光粉之吸收效率及轉換效率相差甚大,造成黃光紅光比例與計算值誤差大,由CIE色度座標顯示其混光結果仍呈現白光偏藍。
 The Y2BaZnO5:Eu3+, A+ (A = K, Na, Li) phosphors were synthesized with alkali carbonates by soild-state method. The effect of K+, Na+ and Li+ ions on the crystallization behavior and photoluminescence property of Y2BaZnO5:Eu3+, A+ were investigated. The results showed that the activation energy for crystallization (QC) and grain growth (Qg) of Y2BaZnO5 was ~283 kJ/mol and ~25.3 kJ/mol, respectively. Grain size of Y2BaZnO5:Eu3+ decreased with the increasing concentration of Eu3+. K2CO3 has played the role as flux in the reaction. It was observed that the asymmetry ratio (5D0→7F2 / 5D0→7F1) of Y2BaZnO5:Eu3+, 0.2Li+ was 2.8.
 From the analytical results of UV-vis and photoluminescence excitation (PLE), the alkali ions occupied the Ba2+ sites, which would give rise to a number of oxygen vacancies for the charge neutrality. Therefore, the PL intensity of Y2BaZnO5:Eu3+, 0.0125Na+ at 626 nm was increased by a factor of 1.25 in comparison with that of undoped sample under excitation at 395 nm and red emission efficiency excited by 468 nm was up to 62.3% due to oxygen vacancies. It is also found that the oxygen vacancies has reduced decay rate, which further increased decay time from 0.74 to 0.886 ms. As the concentration of alkali ions increased, the red emission of the Y2BaZnO5:Eu3+, A+ phosphors showed a blue-shift with a dominant wavelength from 596 to 591 nm and a color purity of 94% on CIE chromaticity coordinates, respectively. From the results of CIE, the blending phosphor of YAG:Ce3+ and Y2BaZnO5:Eu3+, Na+ was not uniform due to the difference in their conversion efficiency, which turned out to result in the mixed light of bluish white.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII

第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第二章 理論基礎與文獻回顧 5
2.1 發光原理與機制 5
2.1.1 發光類型 6
2.1.2 組態座標(Configuration Coordination) 7
2.1.3 史托克位移(Stokes Shift) 8
2.1.4 能量轉移 9
2.2 固態材料之光致發光 9
2.2.1 本質發光 10
2.2.2 異質發光 10
2.3 無機螢光材料之組成與交互作用 11
2.3.1 螢光材料分類 12
2.3.2 組成之選擇與設計 14
2.3.3 影響發光之因素 14
2.4 稀土元素之發光特性 15
2.4.1 稀土離子之f↔f電子躍遷 16
2.4.2 電荷轉移帶(Charge Transfer Bands) 16
2.5 主體Y2BaZnO5介紹 17
2.6 螢光材料發光特性之量測 17
2.6.1 亮度量測 17
2.6.2 放射光譜及激發光譜量測 17
2.6.3 量子效率(Quantum Yield, QE)量測 18
2.6.4 衰減期(Decay Time)量測 18
2.6.5 色度座標(CIE)量測 19
2.7 添加物對主體晶格之影響 20
2.7.1 電荷補償(Charge Compensation) 20
2.7.2 晶粒尺寸 21
第三章 實驗方法與步驟 38
3.1 實驗藥品 38
3.2 實驗步驟 39
3.2.1 螢光粉體合成 39
3.2.2 螢光粉之混合 39
3.2.3 轉換效率(Conversion Efficiency)量測 39
3.3 儀器設備 40
第四章 結果與討論 46
4.1 螢光粉之粉體性質(Powder Characteristics) 46
4.1.1 熱差╱熱重(DTA-TG)分析 46
4.1.2 結晶活化能 48
4.1.3 x-ray繞射(XRD)分析 49
4.1.4 晶粒大小及晶粒成長活化能 50
4.1.5 晶場對稱性 51
4.2 螢光粉之發光特性(Luminescence Properties) 72
4.2.1 吸收光譜(UV-vis)分析 72
4.2.2 激發光譜(PLE)分析 73
4.2.3 放射光譜(PL)分析 74
4.2.4 衰減時間(Decay Time) 75
4.2.5 吸收及轉換效率(Conversion Efficiency)量測 76
4.2.6 色度座標(CIE) 77
4.3 螢光粉之混合 98
4.3.1 混合比例之計算 98
4.3.2 色度座標(CIE) 99
第五章 結論 104
參考文獻 106
[1] 許宗榮,“白光LED製作技術”,工業材料雜誌,220, 148-151 (2005)
[2] 康佳正、劉如熹、廖秋峰,“LED照明光源展望(六);可被UVLED激發之螢光體介紹”,工業材料雜誌,232, 145 (2006)
[3] 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹” (2003)
[4] Lyuji Ozawa, Chemical Review, v103, n10 3835 (2003)
[5] J. H. Jeong, K. S. Shim, H. K. Yang, J. S. Bae, B. K. Moon, S. S. Yi, J. H. Kim, Y. S. Kim, “Li-doping effect on the photoluminescence behaviors of Eu-doped Y2-xGdxO3 ceramic phosphors”, Journal of Luminescence, 122-123, 87-90 (2007)
[6] S. H. Shin, J. H. Kang, D. Y. Jeon, D. S. Zang, “Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions”, Journal of Luminescence, 114 , 275–280 (2005)
[7] D. R. Vij, “Luminescence of solids”, Plenum, New York (1998)
[8] 劉如熹、林益山、廖秋峰,“LED照明光源展望(一):從藍光紫外光到白光”,220, 138-140 (2005)
[9] Shigeo Shionoya, William M. Yen, Phosphor handbook, CRC Press LLC, New York, USA (1998)
[10] Lyuji, Ozawa, Cathodoluminescence, Kodansha Ltd, Tokyo (1990)
[11] P. Goldberg, Luminescence of Inorganic Solids, Acadamic Press Inc., New York (1966)
[12] K. S. Luslick, “Sonochemistry”, Science, 23, 1439-1445 (1990)
[13] 梁志豪,“Ba1-xSrxM2ZnO5 (M = Y, La) (x = 0~1)系之光致發光特性之研究”,國立成功大學材料科學及工程學系碩士論文,民國96年
[14] J. A. Deluca, “An Introduction to Luminescence in Organic Solids”, Journal of Chemical Education, 8, 57, 541-585 (1980)
[15] G. Blasse and B. C. Grabmaier, “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, Germany (1994)
[16] 陳俞仲,“錫酸鹽M2SnO4 (M = Sr, Ca, Zn)螢光粉之合成與螢光特性研究”,國立成功大學材料科學及工程學系博士論文,民國94年
[17] R. C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publisher, 8, The Netherlands (1991)
[18] 楊俊英,“電子產業用螢光材料之應用調查”,工研院,民國81年
[19] G. Blasse, Handbook on the Physics and Chemistry of Rare Earths, v4, North-Holland, p237 (1979)
[20] 蘇鏘,“稀土化學”,清華大學出版社,北京 (2000)
[21] R. M. Hazen, L. W. Finger, R. J. Anger, C. T. Prewitt, N. L. Ross, H. K. Mao, and C. G. Hadidiacos, “Crystallographic description of phases in the Y-Ba-Cu-O superconductor”, Physical Review B, v35, n13 (1987)
[22] 陳琨明,“釔鋁氧石榴石螢光體(Y3Al5O12:Ce)之合成與發光特性研究”,國立成功大學材料科學及工程學系碩士論文,民國96年
[23] The Color Guide and Glossary, http://www.x-rite.com
[24] F. J. Avella, “The Cathodoluminescence of Terbium Activated Indium Orthoborate”, J. Electrochem. Soc., 113, 1225 (1966)
[25] R. Jagannathan, S. P. Manoharan, R. P. Rao, R.L. Narayanan and N. Rajaram, “Color Coordinates of Some Photoluminescent Materials”, Bull. Electrochem. 4, 597 (1988)
[26] 魏均穎,“氧化鑭添加及冷卻速率對鈦酸鋇PTCR效應及導電行為的影響”,國立成功大學材料科學及工程學系碩士論文,民國94年
[27] W. D. Kingery, H. K. Bown and D. R. Uhlmann, Introduction to Ceramics, 61, 461, 498, 900, Singapore (1991)
[28] M. F. Yan, R. M. Cannon and H. K. Bowen, Ceramic Microstructures, 276 (1976)
[29] K. R. Udayakumar, K. G. Brooks, J. A. T. Taylor and V. R. W. Amarakoon, “Effect of Liquid Phase on PTCR Behavior of BaTiO3”, Ceram. Eng. Sci. Proc., 8 (9-10), 1035 (1987)
[30] N. Mukhwejee, R. D. Roseman and Q. Zhang, “Sintering behavior and PTCR properties of stoichiometric blend BaTiO3”, J. Phys. Chem. Solids., 63, 631 (2002)
[31] P. Bomlai, N. Sirikulrat and T. Tunkasiri, “Effects of TiO2 and SiO2 Additions on Phase Formation, Microstructures and PTCR Characteristics of Sb-doped Barium Strontium Titanate Ceramics”, J. Mat. Sci., 39, 1831 (2004)
[32] D. F. K. Henning and B. S. Schreinemacher, “Temperature-Stable Dielectric Materials in the System BaTiO3-Nb2O5-Co3O4”, J. Europ. Ceram. Soc., 14, 463 (1994)
[33] http://www.oceanoptics.com/
[34] L. M. Natale and A. K. Helmy, “Solid state reaction of sodium carbonate with montmorillonite at 550℃”, Clays and Clay Minerals, v37, n1, 89-95 (1989)
[35] 陳金民、汪奇林、黃志良、許濤、高淑敏,”燒結法製備四鈦酸鉀晶鬚的研究”,武漢工程大學學報,v29, n2 (2007)
[36] Samuel J. Schneider and Ernest M. Levin, “Polymorphism of K2CO3”, Journal of The American Ceramic Society, v56, n4, 218-219 (1973)
[37] Angela Maciel, J. F. Ryan and P. J. Walker, “Structural phase transitions in K2CO3”, J. Phys. C:Solid State Phys., 14, 1611-1618 (1981)
[38] P. Pasierb, R. Gajerski, S. Komornicki and M. Rekas, “Structual Properties and Thermal Behavior of Li2CO3-BaCO3 System by DTA, TG and XRD Measurements”, Journal of Thermal Analysis and Calorimetry, v65, 457-466 (2001)
[39] JCPDS-ICCD, PDF-number:89-5592, 74-1628, 85-0418, 89-0511, 89-5856
[40] 張益新,“鐵鈦礦結構之合成及性質研究”,國立成功大學材料科學及工程學系博士論文,民國93年
[41] B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions“, Phys. Rev., 127, 750 (1962)
[42] G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions”, J. Chem. Phys., 3, 511 (1962)
[43] S. Polizzi, M. Battagliarin, M. Bettinelli, A. Speghini and G. Gagherazzi, “Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis”, J. Mater. Chem., 12, 742 (2002)
[44] W. J. L. Oomen and A. M. A. van Dongen, “Europium(III) in oxide glasses:Dependence of the emission spectrum upon glass composition”, J. Non-Cryst. Solids, 111, 205 (1989)
[45] Yu-Chun Li, Yen-Hwei Chang, Yu-Feng Lin, Yee-Shin Chang, and Yi-Jing Lina, “Green-Emitting Phosphor of LaAlGe2O7:Tb3+ under Near-UV Irradiation”, Electrochemical and Solid-State Letters, 9, H74-H77 (2006)
[46] Bingjie Liu, Mu Gu, Xiaolin Liu, Chen Ni, Di Wang, Lihong Xiao, Riu Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor”, Journal of Alloys and Compounds, 440, 341-345 (2007)
[47] Michael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang, “Catalytic Growth of Zinc Oxide Nanowiresby Vapor Transport”, Adv. Mater., 13, 113-116 (2001).
[48] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt,B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys., 79, 7983 (1996).
[49] Neeraj Khare, Menno J. Kappers, Ming Wei, Mark G.Blamire, and Judith L. MacManus-Drissoll, “Defect-Induced Ferromagnetism in Co-doped ZnO”, Adv. Mater., 18, 1449-1452 (2006).
[50] Nobuyuki TAKAMORI, Kazuya TSUJINO, and Michio MATSUMURA, “Optical Properties and Crystallinity of ZnO Films for Application in Super-Resolution Optical Discs”, Japanese Journal of Applied Physics, v46, n5A, 2944-2946 (2007)
[51] Hai H., Guo Q. X., Wee S. C., Leong M. G., Chwee H. C., Nanotechnology, 13, 318–323 (2002)
[52] HongM. Y., Jian X. S., Hong B. L., Meng L. G., Mat. Sci. Eng. B, 127, 276–279 (2006)
[53] http://www.ledinside.com/
[54] W. Walter, “Optimum Phosphors Blends for Fluorescent Lamps”, Applied Optics, 10, 1108-1113 (1971)
[55] 陳柏偉,“硫化鋅螢光粉混合與白光電激發光之研究”,國立成功大學材料科學及工程學系碩士論文,民國93年
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔