|
Bibliography [1] B. R. Mollow, Power Spectrum of Light Scattered by Two-Level Systems, Phys. Rev. 188, 1969 (1969). [2] F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, Observation of Ampli‾cation in a Strongly Driven Two-Level Atomic System at Optical Frequencies, Phys. Rev. Lett. 38, 1077 (1977). [3] C. Cohen-Tannoudji and S. Reynaud, Dressed-Atom Description of Resonance Fluorescence and Absorption Spectra of a Multi-Level Atom in an Intense Laser Beam, J. Phys. B: At. Mol. Phys. 10, 345 (1977). [4] C. Cohen-Tannoudji and J. D. Roc, G. Grvnberg, Atom-Photon Interactions: Basic Pro- cesses and Applications, John Wiley and Sons, New York, 1992. [5] P. R. Berman, B. Dubetsky, and J. Guo, Recoil-Induced Resonances in Pump-Probe Spec- troscopy, Phys. Rev. A 51, 3947 (1995). [6] S. H. Autler and C. H. Townes, Stark E®ect in Rapidly Varying Fields, Phys. Rev. 100, 703 (1955). [7] H. R. Gray and C. R. Stroud, Jr., Autler-Townes E®ect in Double Optical Resonance, Opt. Commun. 25, 359 (1978). [8] K. J. Boller, A. Imamolu, and S. E. Harris, Observation of Electromagnetically Induced Transparency, Phys. Rev. Lett. 66, 2593 (1991). [9] J. E. Field, K. H. Hahn, and S. E. Harris, Observation of Electromagnetically Induced Transparency in Collisionally Broadened Lead Vapor, Phys. Rev. Lett. 67, 3062 (1991). [10] S. Harris, Electromagnetically Induced Transparency, Physics Today 50, 36 (1997). [11] J. P. Marangos, Electromagnetically Induced Transparency, J. of Mod. Opt. 45, 471 (1998). [12] F. Michael, I. Atac, and P. M. Jonathan, Electromagnetically Induced Transparency: Optics in Coherent Media, Rev. Mod. Phys. 77, 633 (2005). [13] D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Continuous-Wave Electromagnetically Induced Transparency: A Comparison of V, ¤, and Cascade Systems, Phys. Rev. A 52, 2302 (1995). [14] J. Dalibard and C. Cohen-Tannoudji, Laser Cooling Below the Doppler Limit by Polariza- tion Gradients: Simple Theoretical Models, J. Opt. Soc. Am. B 6, 2023 (1989). [15] D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, Observation of Lasing Mediated by Collective Atomic Recoil, Phys. Rev. Lett. 91, 183601 (2003). [16] D. R. Meacher, D. Boiron, H. Metcalf, C. Salomon, and G. Grynberg, Method for Ve- locimetry of Cold Atoms, Phys. Rev. A 50, R1992 (1994). [17] S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterler, Superradiant Rayleigh Scattering from a Bose-Einstein Condensate, Science 285, 571 (1999). [18] M. Yan, E. G. Rickey, and Y. Zhu, Observation of Doubly Dressed States in Cold Atoms, Phys. Rev. A 64, 013412 (2001). [19] L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, Autler- Townes E®ect in a Strongly Driven Electromagnetically Induced Transparency Resonance, Phys. Rev. A 72, 053801 (2005). [20] K. Bergmann, H. Theuer, and B. W. Shore, Coherent Population Transfer among Quantum States of Atoms and Molecules, Rev. Mod. Phys. 70, 1003 (1998). [21] K. Petr, T. Ioannis, and S. Moshe, Colloquium: Coherently Controlled Adiabatic Passage, Rev. Mod. Phys. 79, 53 (2007). [22] G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, An Experimental Method for the Observa- tion of R.F. Transitions and Laser Beat Resonances in Oriented Na Vapour, Nuovo Cimento B. 36, 5 (1976). [23] S. E. Harris and Y. Yamamoto, Photon Switching by Quantum Interference, Phys. Rev. Lett. 81, 3611 (1998). [24] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of Coherent Optical In- formation Storage in an Atomic Medium Using Halted Light Pulses, Nature (London) 409, 490 (2001). [25] D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, M. D. Lukin, Storage of Light in Atomic Vapor, Phys. Rev. Lett. 86, 783 (2001). [26] M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Stationary Pulses of Light in an Atomic Medium, Nature (London) 426, 638 (2003). [27] D. N. Matsukevich, T. Chaneliere, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. B. Kennedy, and A. Kuzmich, Entanglement of a Photon and a Collective Atomic Excitation, Phys. Rev. Lett. 95, 040405 (2005). [28] T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, Quantum Telecommunication Based on Atomic Cascade Transition, Phys. Rev. Lett. 96, 093604 (2006). [29] A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser Cooling Below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping, Phys. Rev. Lett. 61, 826 (1988). [30] M. O. Scully, S. Y. Zhu, and A. Gavrielides, Degenerate Quantum-Beat Laser: Lasing Without Inversion and Inversion Without Lasing, Phys. Rev. Lett. 62, 2813 (1989). [31] S. E. Harris, Lasers Without Inversion: Interference of Lifetime-Broadened Resonances, Phys. Rev. Lett. 62, 1033 (1989). [32] G. S. Agarwal, G. Vemuri, and T. W. Mossberg, Lasing Without Inversion: Gain Enhance- ment through Spectrally Colored Population Pumping, Phys. Rev. A 48, R4055 (1993). [33] G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, Laser Oscillation Without Population Inversion in a Sodium Atomic Beam, Phys. Rev. Lett. 76, 2053 (1996). [34] T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, Optical Clocks Based on Ultra- narrow Three-Photon Resonances in Alkaline Earth Atoms, Phys. Rev. Lett. 94, 050801 (2005). [35] G. S. Agarwal and W. Harshawardhan, Inhibition and Enhancement of Two Photon Ab- sorption, Phys. Rev. Lett. 77, 1039 (1996). [36] S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, Nonlinear Optics via Double Dark Resonances, Phys. Rev. A 68, 063801 (2003). [37] H. Wang, D. Goorskey, and M. Xiao, Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System, Phys. Rev. Lett. 87, 073601 (2001). [38] M. Mitsunaga and N. Imoto, Observation of an Electromagnetically Induced Grating in Cold Sodium Atoms, Phys. Rev. A 59, 4773 (1999). [39] R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, Spatial Con- sequences of Electromagnetically Induced Transparency: Observation of Electromagnetically Induced Focusing, Phys. Rev. Lett. 74, 670 (1995). [40] S. Z. Jin, Y. Q. Li, and M. Xiao, Hyper‾ne Spectroscopy of Highly-Excited Atomic States Based on Atomic Coherence, Opt. Commun. 119, 90 (1995). [41] A. Krishna, K. Pandey, A. Wasan and V. Natarajan, High-Resolution Hyper‾ne Spec- troscopy of Excited States Using Electromagnetically Induced Transparency, Europhys. Lett. 72, 221 (2005). [42] T. H. Yoon, C. Y. Park, and S. J. Park, Laser-Induced Birefringence in a Wavelength- Mismatched Cascade System of Inhomogeneously Broadened Yb Atoms, Phys. Rev. A 70, 061803 (2004). [43] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Coherent Optical Detection of Highly Excited Rydberg States Using Electromagnetically Induced Transparency, Phys. Rev. Lett. 98, 113003 (2007). [44] J. J. Sakurai, Modern Quantum Mechanics, Revised ed., Addison-Wesley, Massachusetts, 1994. [45] M. Sargent, M. O. Scully, and W. E. Lamb, Jr., Laser Physics, Addison-Wesley, Mas- sachusetts, 1974. [46] W. DemtrÄoder, Laser Spectroscopy, Springer; 3rd ed., 2002. [47] R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, Fast-Beam Laser Lifetime Measurements of the Cesium 6p 2P1=2;3=2 States, Phys. Rev. A 60, 3648 (1999). [48] G. Alessandretti, F. Chiarini, G. Gorini and F. Petrucci, Measurement of the Cs 8S-Level Lifetime, Opt. Commun. 20, 289 (1977). [49] S. Wielandy and A. L. Gaeta, Investigation of Electromagnetically Induced Transparency in the Strong Probe Regime, Phys. Rev. A 58, 2500 (1998). [50] S. Shepherd, D. J. Fulton, and M. H. Dunn, Wavelength Dependence of Coherently Induced Transparency in a Doppler-Broadened Cascade Medium, Phys. Rev. A 54, 5394 (1996). [51] J. G. Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Electromagnetically Induced Trans- parency in Ladder-Type Inhomogeneously Broadened Media: Theory and Experiment, Phys. Rev. A 51, 576 (1995). [52] A. J. Leggett, Bose-Einstein Condensation in the Alkali Gases: Some Fundamental Con- cepts, Rev. Mod. Phys. 73, 307 (2001). [53] E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose-Einstein Condensation in a Dilute Gas, the First 70 Years and Some Recent Experiments, Rev. Mod. Phys. 74, 875 (2002). [54] T. W. Hansch and A. L. Schawlow, Cooling of Gases by Laser Radiation, Opt. Comm. 13, 68 (1975). [55] D. Wineland and H. Dehmelt, Proposed 1014 ¢º < º Laser Fluorescence Spectroscopy on Tl+ Mono-Ion Oscillator III (side band cooling), Bull. Am. Phys. Soc. 20, 637 (1975). [56] D. J. Wineland, R. E. Drullinger, and F. L. Walls, Radiation-Pressure Cooling of Bound Resonant Absorbers, Phys. Rev. Lett. 40, 1639 (1978). [57] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Three-Dimensional Viscous Con‾nement and Cooling of Atoms by Resonance Radiation Pressure, Phys. Rev. Lett. 55, 48 (1985). [58] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Trapping of Neutral Sodium Atoms with Radiation Pressure, Phys. Rev. Lett. 59, 2631 (1987). [59] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Obser- vation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995). [60] M. Kozuma, Y. Suzuki, Y. Torii, T. Sugiura, T. Kuga, E. W. Hagley, and L. Deng, Phase- Coherent Ampli‾cation of Matter Waves, Science 286, 2309 (1999). [61] A. Ashkin, Design for an Optical CW Atom Laser, Science 101, 12108 (2004). [62] Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Atom Interferometry with Bose-Einstein Condensates in a Double-Well Potential, Phys. Rev. Lett. 92, 050405 (2004). [63] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch and I. Bloch, Quantum Phase Tran- sition from a Super°uid to a Mott Insulator in a Gas of Ultracold Atoms, Nature 415, 39 (2002). [64] Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, Control of Light Pulse Propagation with Only a Few Cold Atoms in a High-Finesse Microcavity, Phys. Rev. Lett. 89, 233001 (2002). [65] W. C. Fang, Electromagnetically Induced Transparency of Cs atom: Room Temperature and Cold Sample, Master Thesis, National Cheng Kung University (2007). [66] J. H. Van Vleck, On ¾-Type Doubling and Electron Spin in the Spectra of Diatomic Molecules, Phys. Rev. 33, 467 (1929). [67] G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules, Robert E. Krieger Publishing Co., Malabar, Florida, 1989. [68] H. Lefebvre-Brion and R. W. Field, Perturbations in the Spectra of Diatomic Molecules, Academic Press Inc.(London) Ltd., 1986. [69] G. Herzberg and Ch. Jungen, Rydberg Series and Ionization Potential of the H2 Molecule, J. Mol. Spectrosc. 41, 425 (1972). [70] W. G. Sturrus, P. E. Sobol, and S. R. Lundeen, Observation of High-Angular-Momentum Rydberg States of H2 in a Fast Beam, Phys. Rev. Lett. 54, 792 (1985). [71] N. Bjerre, R. Kachru, and H. Helm, Three-Photon Double-Resonance Spectroscopy of Au- toionizing Rydberg States in H2, Phys. Rev. A 31, 1206 (1985). [72] R. D. Knight and L. G. Wang, Observation of Triplet nd Autoionizing Rydberg States in H2, Phys. Rev. Lett. 55, 1571 (1985). [73] L. Guenadiy, L. A. Marjatta, and L. Li, Enhanced Access to the Dark Triplet States of 7Li2 through New Singlet-Triplet A1§+ u b3¦u Perturbation Window Levels: Perturbation- Facilitated Optical-Optical Double Resonance Study of the 23§+ g State, J. Mol. Spectrosc. 205, 73 (2001). [74] R. S. Mulliken and A. Christy, ¤-Type Doubling and Electron Con‾gurations in Diatomic Molecules, Phys. Rev. 38, 87 (1931). [75] R. K. Hinkley, J. A. Hall, T. E. H. Walker, and W. G. Richards, ¤-Doubling in 2¦ States of Diatomic Molecules, J. Phys. B 5, 204 (1972). [76] A. Hishikawa, H. Sato, and K. Yamanouchi, -type Doubling Reversal in the B3¦1 State of 200HgAr as a Probe of the Long-Range Potential of the A3¦0+ State, J. Chem. Phys. 108, 9202 (1998). [77] P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed, National Research Council of Canada, Canada, 1998. [78] R. S. Mulliken, The Interpretation of Band Spectra. Parts I, IIa, IIb, Rev. Mod. Phys. 2, 60 (1930). [79] N. W. Carlson, A. J. Taylor, K. M. Jones, and A. L. Schawlow, Two-Step Polarization- Labeling Spectroscopy of Excited States of Na2, Phys. Rev. A 24, 822 (1981). [80] Y. L. Pan, S. Dianping, L. S. Ma, D. Liangen, and Z. G. Wang, Optical-Optical Double- Resonance Excitation Spectra of the (6d)1¢g and (7d)1¢g Rydberg States in Na2, J. Mol. Spectrosc. 169, 534 (1995). [81] P. Kusch and M. M. Hessel, An Analysis of the B1¦u ¡ X1X+ g Band System of Na2, J. Chem. Phys. 68, 2591 (1978). [82] J. M. L. Poyato, J. J. Camacho, A. M. Polo, and A. Pardo, Radiative Transition Probabil- ities for the B1¦u ¡ X1X+ g Band System of Na2 Excited by the 4658ºA Line of the Argon Ion Laser, Spectrochim. Acta, Part A 51, 1879 (1995). [83] J. M. L. Poyato, J. J. Camacho, A. M. Polo, and A. Pardo, Analysis and Transition Probabilities of the B1¦u ¡ X1X+ g System of Na2 Excited by the 5017ºA Line of the Argon Ion Laser, Spectrochim. Acta, Part A 52, 409 (1996). [84] J. J. Camacho, J. M. L. Poyato, A. M. Polo, and A. Pardo, Fluorescence of Na2 Excited by the 4545ºA Line of the Argon Ion Laser, J. Quant. Spectrosc. Radiat. Transfer. 56, 353 (1996). [85] J. J. Camacho, A. Pardo, A. M. Polo, D. Reyman, and J. M. L. Poyato, Analysis and Transition Probabilities for the Na2 B1¦u ¡X1X+ g System Using as Excitation the 4727ºA Ar+ Laser Line, J. Mol. Spectrosc. 191, 248 (1998). [86] A. Pardo, Laser-Induced Fluorescence of Molecular Sodium, Chem. Phys. Lett. 309, 55 (1999). [87] J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, Transition Proba- bilities and Average Cross Sections for the Na2 B1¦u ¡X1X+ g System Using as Excitation the 4880ºA Ar+ Laser Line, Spectrochim. Acta, Part A 56, 769 (2000). [88] J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, Analysis and Transition Probabilities of the Na2 B1¦u ¡ X1X+ g Band System of Na2 Excited by the 4579ºA Ar+ Laser Line, J. Quant. Spectrosc. Radiat. Transfer. 65, 729 (2000). [89] A. Pardo, Laser-Induced Irradiance Fluorescence of Molecular Sodium Excited by the 4765ºA Ar+ Laser Line, J. Mol. Spectrosc. 199, 225 (2000). [90] L. Li and R. W. Field, CW Optical-Optical Double Resonance studies of the 23¦g; 33¦g; 43¦+ g ; and 13¢g Rydberg states of Na2, J. Mol. Spectrosc. 117, 245 (1986). [91] Coherent Autoscan Operator's Manual-PC Version (Coherent, Int. partno. 0162-806-00, 1994, USA). [92] Y. L. Pan, L. S. Ma, L. E. Ding, and D. P. Sun, Optical-Optical Double-Resonance Excita- tion Spectra of the (8d)1¢g High-Lying Rydberg State in Na2, J. Mol. Spectrosc. 162, 178 (1993). [93] M. M. Hessel and C. R. Vidal, The B1¦u ¡ X1X+ g Band System of the 7Li2 Molecule, J. Chem. Phys. 70, 4439 (1979). [94] See EPAPS Document No. E-JCPSA6-123-001546 for the term values from experimental observations(OBS) and calculations from ‾tted molecular constants (CALC) and the di®er- ence between them(O-C) for all the observed levels of the 5 1¢g state of Na2. This document can be reached via a direct link in the online article's HTML reference section or via the EPAPS home-page (http://www.aip.org/pubservs/epaps.html). [95] S. Magnier, Ph. Millie, O. Dulieu, and F. Masnou-Seeuws, Potential Curves for the Ground and Excited States of the Na2 Molecule Up to the (3s+5p) Dissociation Limit: Results of Two Di®erent E®ective Potential Calculations, J. Chem. Phys. 98, 7113 (1993). [96] K. M. Jones, S. Maleki, S. Bize, P. D. Lett, C. J. Williams, H. Richling, H. Knockel, E. Tiemann, H. Wang, P. L. Gould, and W. C. Stwalley, Direct Measurement of the Ground- State Dissociation Energy of Na2, Phys. Rev. A 54, R1006 (1996). [97] W. C. Martin and R. Zalubas, Energy Levels of Sodium Na I through Na XI, J. Phys. Chem. Ref. Data 10, 153 (1981). [98] A. L. G. Rees, The Calculation of Potential-Energy Curves from Band-Spectroscopic Data, Proc. Phys. Soc. 59, 998 (1947). [99] Ch. Jungen and O. Atabek, Rovibronic Interactions in the Photoabsorption Spectrum of Molecular Hydrogen and Deuterium: An Application of Multichannel Quantum Defect Meth- ods, J. Chem. Phys. 66, 5584 (1977). [100] Ch. Jungen and Dan Dill, Calculation of Rotational-Vibrational Preionization in H2 by Multichannel Quantum Defect Theory, J. Chem. Phys. 73, 3338 (1980). [101] B. Hemmerling, R. Bombach, and W. DemtrÄoder, Rotational Perturbations between Ry- dberg States of Li2, J. Chem. Phys. 87, 5186 (1987). [102] M. Schwarz, R. Duchowicz, W. DemtrÄoder, and Ch. Jungen, Autoionizing Rydberg States of Li2: Analysis of Electronic-Rotational Interactions, J. Chem. Phys. 89, 5460 (1988). [103] A. L. Roche and Ch. Jungen, Multichannel Quantum Defect Analysis of Preionizing Ry- dberg States of Li2 Including Rovibronic Interactions, J. Chem. Phys. 98, 3637 (1993). [104] F. Hund, Zeits. F. Physik., Zur Deutung einiger Erscheinungen in den Molekelspektren, 36, 657 (1926). [105] E. Klisch, S. P. Belov, R. Schieder, G. Winnewisser, Transitions between Hund's Coupling Cases for the X2¦ state of NO, Molec. Phys 97, 65(1999). [106] Y. Huang and R. J. L. Roy, Vapor Transport within the Thermal Di®usion Cloud Chamber, J. Chem. Phys. 113, 7398 (2003). [107] M. Tamanis, M. Auzinsh, I. Klincare, O. Nikolayeva, R. Ferber, E. A. Pazyuk, A. V. Stolyarov, and A. Zaitsevskii, NaK ¤ Doubling and Permanent Electric Dipoles in Low- Lying 1¦ States: Experiment and Theory, Phys. Rev. A. 58, 1932(1998). [108] S. O. Adamson, A.Zaitsevskii, E. A. Pazyuk, A. V. Stolyarov, M. Tamanis, R. Ferber, and R. Cimiraglia, The Origin of ¤-Doubling E®ect for the B1¦ and D1¦ States of NaK, J. Chem. Phys. 113, 8589 (2000). [109] A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Observation of a Three-Photon Electromagnetically Induced Transparency in Hot Atomic Vapor, Phys. Rev. A 65, 043817 (2002). [110] V. Wong, R. S. Bennink, A. M. Marino, R. W. Boyd, C. R. Stroud, Jr., and F. A. Narducci, In°uence of Coherent Raman Scattering on Coherent Population Trapping in Atomic Sodium Vapor, Phys. Rev. A 70, 053811 (2004). [111] K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, Competition between Elec- tromagnetically Induced Transparency and Stimulated Raman Scattering, Phys. Rev. A 73, 013807 (2006).
|