跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴靈焜
研究生(外文):Ling-kun Lai
論文名稱:氣候異變下控制室內環境中臭氧與建材二次污染物關鍵因子之研究
論文名稱(外文):A Study on Control the Key-factors of Secondary pollutants from Building Materials by Ozone reaction of Indoor Environment when Global Climate Change
指導教授:江哲銘江哲銘引用關係
指導教授(外文):Che-Ming Chiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:建築學系碩博士班
學門:建築及都市規劃學門
學類:建築學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:229
中文關鍵詞:移除效率通風換氣量二次污染物低逸散建材臭氧
外文關鍵詞:ozoneremoval efficiencylow emission materialssecondary pollutantsventilation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:1
一、研究動機與目的:
溫室效應及氣候異變下,台灣環境負荷逐年增高,都市光化學反應造成臭氧(O3) 自87年年平均濃度22ppb攀升至95年年平均濃度29ppb,室外臭氧濃度值已經接近環保署室內空氣品質建議值(30ppb);相關研究指出,在標準條件(25℃, RH=50%)下,臭氧(100ppb)與建材VOCs (α-pinene 310ppb),會產生「二次污染物─甲醛」危害人體健康,造成室內人員暴露高風險環境中。在追求健康建築環境下,以提高新鮮外氣引入量與使用低逸散健康綠建材來降低室內化學性污染,得以降低SBS症狀與提高工作效率,但台灣居住環境大量裝修與事務清淨設備使用頻繁(影印機O3 5.2mg/hr),若提高外氣引入量是否造成室內人員增高暴露二次污染之機會,值得研究探討。
二、研究方法:
主要依據ASTM D5116-97(小型環控箱測試法)、ASTM D6670-01(全尺寸環控箱測試法)及ISO16000(VOCs與甲醛採樣分析方法)進行建材測試。
三、研究課題:
探討課題共分為三部分:
(一) 瞭解氣候異變下,通風換氣量與室內臭氧濃度之關係。
(二) 探討臭氧與建材二次污染物關鍵因子相關性。
(三) 提出有效通風換氣量對臭氧及建材二次污染物之移除控制。
四、研究成果:
(一) 標準環境條件(T=25℃、RH=50%)與固定臭氧濃度下,高換氣率對室內臭氧濃度有較佳之移除效果。
(二) 臭氧與建材二次污染物關鍵因子相關性
【關鍵因子】:(I) 通風換氣影響因子、(II) 建材影響因子、(III) 臭氧因子:
1.不同臭氧濃度(50、100、200 ppb)、2.不同反應時間(1.0、1.5、3.0 hr)
I、【關鍵因子I】通風換氣影響因子:
1.無通風換氣量下,釋放臭氧期間(10-12hr),Limonene與臭氧反應且濃度降低約23μg/m3。
2.無通風換氣量下,釋放臭氧後至測試結束(10-24hr),首要污染物與二次污染物有明顯蓄積現象。
3.無通風換氣量期間(12-24hr),釋放臭氧達60ppb產生二次污染物─甲醛11.36µg與丙酮 48.31 µg。
II、【關鍵因子II】建材影響因子:
1.清漆塗料逸散之VOCs與臭氧反應顯著性極低。
2.釋放臭氧期間(10-12hr):木質塗料A─甲醛上升濃度為木質塗料B之1.1倍。丙酮上升濃度為木質塗料B之5.35倍。結果顯示:木質塗料A之二次污染物─甲醛與丙酮反應較木質塗料B為顯著。
III、【關鍵因子III】臭氧因子:
在標準測試條件下,
1.揮發性有機化合物─Limonene:在不同臭氧濃度(50、100、200ppb)與不同反應時間(1.0、1.5、3.0hr)測試中與臭氧反應後,Limonene逸散濃度有下降趨勢。
2.甲醛(釋放臭氧期間10-12hr)
─在不同臭氧濃度(50、100、200ppb)測試中:臭氧濃度與甲醛濃度上升幅度進行迴歸分析後,具有高度相關性(R2=0.9911)。
─在不同臭氧反應時間(1.0、1.5、3.0hr)測試中:臭氧反應時間與甲醛濃度上升幅度進行迴歸分析後,具有高度相關性(R2=0.9251)。
(三)綜合以上分析結果:
無通風換氣量下,臭氧與建材反應後,首要污染物與二次污染物有蓄積現象,顯示通風換氣對污染物移除之重要性;高逸散清漆塗料與臭氧反應後,無明顯二次污染產生,但其首要污染危害較二次污染更為嚴重,因此健康綠建材標章以BTEX為主要管制VOCs為必要措施。
比較不同臭氧濃度與不同反應時間之二次污染物影響性─以標準條件下無臭氧實驗之甲醛總逸散量(12-24hr)為基準,比較二次污染物─甲醛於臭氧釋放後至測試結束(12-24hr)總逸散量比值:(ASTM D5116-06之Chamber Model質量平衡模型計算)
【臭氧反應時間-3.0hr (2.54倍)】影響性最高,其次【臭氧濃度-200ppb (1.28倍)】、
【臭氧濃度-100ppb與臭氧反應時間-1.5hr (1.15倍)】、【臭氧濃度-50ppb (1.09倍)】、
【臭氧反應時間-1.0hr (0.89倍)】
(四)通風換氣量對二次污染物之移除控制
1.調變通風換氣量27.75~99CHM(0.5~1.8ACH)對低逸散木質塗料之VOCs約有54~86%之移除效率。
2.調變通風換氣量27.75~99CHM(0.5~1.8ACH)對低逸散木質塗料之二次污染物─甲醛與丙酮約有57~84%之移除效率。
3.臭氧與低逸散木質塗料之揮發性有機物質(VOCs)與二次污染物─甲醛與丙酮最佳移除區間為0.5~1.0ACH。
1、Scope:
When Global Climate Change and Greenhouse, the Environment load of Taiwan increases year by year. It is because Photochemical reactions in the urban air, the atmosphere of ozone annual average concentration had been increased from 22 ppbv to 29ppbv(1998-2006). The related research pointed out : The ozone and VOCs(α-pinene) have the chemical reaction. The Secondary pollutant─Formaldehyde has been found after the reaction occurrence. Pursuing the Healthy indoor environment, we usually enhance the air exchange rate to reduce the indoor chemical pollution. In Taiwan, the indoor environment decorates massively and office equipment use is frequent. If enhances the air exchange rate to reduce the indoor chemical pollution whether to cause the indoor personnel to exposes more Secondary pollutants.
2、Method:
This study was following ASTM D5116-97(Smalll-Scale chamber test) and ISO16000 (VOCs and Formaldehyde sample / analysis method) with experiments。
3、Discussion:
The topic divides into three parts:
(A)The relations of the air exchange rate and ozone concentration
(B)The relations of the Key-factors between indoor ozone concentration and building materials.
(C)Proposed an effectively ventilation countermeasure to control the Secondary pollutants.
4、Result:
(A) When standard environmental condition (T=25℃、RH=50%)and fixed ozone concentration input, the more high air exchange rate cause indoor ozone concentration more low.
(B) The Key-factors divides into three parts:
1.Key-factor(I)-【Ventilation】:ACH=0,the Primary and Secondary pollutants obviously stores up in 12hr-24hr.The Secondary pollutants(12-24hr)- Formaldehyde develops 11.36µg and Acetone develops 48.31µg.
2.Key-factor(II)-【Materials】: The VOCs of Varnish is no obviously reaction with ozone.As ozone reactes with VOCs of the woody paint A,the Secondary pollutants- Formaldehyde and Acetone develops more than woody paint B.


3.Key-factor(III)-【Ozone】:Compared with the influence of different ozone concentration and different ozone reaction time, 3.0hr-ozone reaction time develops the most Secondary pollutants than others.The next is 200ppb-ozone concentration, 100ppb-ozone concentration, 1.5hr-ozone reaction time, 50ppb-ozone concentration and than 1.0hr-ozone reaction time.

(C) Proposed an effectively ventilation countermeasure to control the Secondary pollutants.
1.Changing the air exchange rate (0.5~1.8ACH)
(a)The removal efficiency of VOCs which emits by the woody paint is 54~86%.
(b)The removal efficiency of Formaldehyde and Acetone which emits by the woody paint is 57~84%.
2.The best scope of the VOCs and the Secondary pollutants is 0.5 ACH ~1.0ACH.
第一章 緒論 I-1
1-1研究動機與目的----------------------------------------------------I-1
1-1-1 研究動機------------------------------------------------------------------I-1
1-1-2 研究目的------------------------------------------------------------------I-4
1-2研究範圍與流程----------------------------------------------------I-5
1-2-1 研究範圍------------------------------------------------------------------I-5
1-2-2 研究流程------------------------------------------------------------------I-6
1-3研究方法-------------------------------------------------------------I-7
第二章 臭氧與建材相關文獻回顧-----------------------------II-1
2-1氣候異變與臭氧濃度變化--------------------------------------II-1
2-1-1氣候異變與溫室效應之影響 -----------------------------------------II-1
2-1-2台灣臭氧濃度------------------------------------------------------------II-4
2-1-3室內臭氧濃度健康危害特性------------------------------------------II-6
2-1-4台灣室內環境品質現況------------------------------------------------II-9
2-2室內建材揮發性有機物質之關係----------------------------II-19
2-2-1揮發性有機化合物定義 ---------------------------------------------II-19
2-2-2室內揮發性有機物來源及種類--------------------------------------II-19
2-2-3揮發性有機化合物質對人體健康之影響--------------------------II-20
2-2-4室內建材之揮發性有機化合物--------------------------------------II-24
2-3二次污染物相關研究-------------------------------------------II-32
2-3-1首要(Primary)逸散與二次(Secandary)逸散污染-----------------II-32
2-3-2二次(Secandary)污染反應模式---------------------------------------II-35
2-4室內污染物逸散模式-------------------------------------------II-36
2-4-1 質量平衡模型----------------------------------------------------------II-36
2-4-2 空調系統與污染物逸散濃度模式----------------------------------II-39
2-4-3 經驗模型----------------------------------------------------------------II-40
2-4-4 物理模式----------------------------------------------------------------II-42
2-4-5 環控箱物理模式-------------------------------------------------------II-45
第三章 實驗設計與分析方法----------------------------------III-1
3-1室內建材揮發性有機物質標準測試方法-------------------III-1
3-1-1測試系統概要-----------------------------------------------------------III-1
3-1-2標準方法理論依據與分析程序-------------------------------------III-3
3-1-3 實驗進行步驟----------------------------------------------------------III-4
3-2建材甲醛與丙酮標準測試方法------------------------------III-10
3-2-1甲醛與丙酮標準方法-------------------------------------------------III-10
3-2-2甲醛與丙酮實驗步驟-------------------------------------------------III-13
3-3建材與臭氧反應實驗之臭氧濃度監測方法---------------III-16
3-3-1臭氧測試實驗步驟----------------------------------------------------III-16
3-4實驗設計與說明------------------------------------------------III-18
3-4-1 實驗說明---------------------------------------------------------------III-18
3-4-2 測試建材選定---------------------------------------------------------III-19
3-4-3 環境因子設定---------------------------------------------------------III-20
3-4-4 實驗設計---------------------------------------------------------------III-21
3-4-5 全尺寸複合木地板構造組立及相關測試點說明---------------III-24
3-5實驗數據分析方法---------------------------------------------III-26
3-5-1 小型環控箱的實驗數據分析---------------------------------------III-26
3-5-2 全尺寸環控箱的實驗數據分析------------------------------------III-27
3-5-3 環控箱逸散衰減模型------------------------------------------------III-30
3-5-2 環控箱衰減模式檢定------------------------------------------------III-30
第四章 測試結果與討論----------------------------------------IV-1
4-1實驗測試之品保與品管-----------------------------------------IV-1
4-1-1 檢量線之建立與製作-----------------------------------------------------IV-1
4-1-2 準確度及精密度與方法偵測極限-------------------------------------IV-8
4-2臭氧與建材二次污染反應之關鍵因子分析---------------IV-21
4-2-1 複合木地板構造揮發性有機物質定性測試----------------------IV-22
4-2-2 建材首要污染物測試分析------------------------------------------IV-26
4-2-3 無通風換氣量下臭氧與建材反應測試分析---------------------IV-31
4-2-4 臭氧與高/低逸散建材二次污染物反應測試分析--------------IV-47
4-2-5 不同臭氧濃度與低逸散建材二次污染反應測試分析---------IV-57
4-2-6 不同臭氧反應時間與低逸散建材二次污染反應測試分析---IV-69
4-2-7 小結---------------------------------------------------------------------IV-82
4-3通風換氣量與二次污染物移除控制之討論---------------IV-86
4-3-1通風換氣量與臭氧濃度之相關性----------------------------------IV-86
4-3-2換氣量對臭氧與建材反應之二次污染物影響-------------------IV-87
4-3-3小結----------------------------------------------------------------------IV-95
第五章 結論與建議------------------------------------------------V-1
5-1結論------------------------------------------------------------------V-1
5-2建議------------------------------------------------------------------V-4

參考文獻-----------------------------------------------------------------------VI-1
參考文獻
外文部份
1.ASTM D5116-97, “Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions From Indoor Materials/Products”,(1997)
2.Aoki, Taisuke; Tanabe, Shin-ichi , Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction , Atmospheric Environment 41 3139–3150,(2007).
3.Berkeley Solar Group "Occupancy Patterns and Energy Consumption in New California Houses (1984-1988)" California Energy Commission Sacramento, (1990)
4.Brooks,B.O., G.M.Qtter,J.A. Debory and R.D. Schimke,Indoor Air Pollution:an edifice complex,Clinical Toxicology,(1991)
5.Brett C.Singer, Beverly K. Coleman, Hugo Destaillats, Alfred T. Hodgson,et al., Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone Atmospheric Environment Volume 40, Issue 35, November, p.6696-6710,(2006).
6.Chambers,Environment International,Vol.15,p.389-396,(1989)
7.Chou, C.C.K. et al.,“The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies.” Atmospheric Environment 40: 3898–3908,(2006).
8.Dagmar Schmidt Etkin, Volatile Organic Compounds in Indoor Environments,(1996).
9.Dagmar Schmidt Etkin,IEQ Strategies-Volatile Organic Compounds in Indoor Environment,Cutter Information CORP,(1996)
10.D.P.Wyon,”The effects of indoor air quality on performance and productivity”,Indoor Air;14:p92-101,(2000)
11.D. Poppendieck, H. Hubbard, M. Ward, C. Weschler, R.L. Corsi., Ozone reactions with indoor materials during building disinfection, Atmospheric Environment 41 3166–3176,(2007)
12.Dols,W.S. and G.N. Walton,CONTAMW 2.0 User Manual .National Institute of Standards and Technology,NISTIR 6921
13.European Commission Joint Research Centre,Indoor Air Quality & it’s Impact on Man,Report NO18:Evaluation of VOC Emissions from Building Products-Solid Flooring Material,(1997).
14.Environmental effects of ozone depletion and its interactions with climate change:2006 assessment
15.E. Uhde, T. Salthammer“Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry”Atmospheric Environment 41 3111–3128,(2007)
16.Guo,Z.,L.E.Sparks,B.A.Tichenor,and J.C.S.Chang, “Predicting the emissions of individual VOCs from petroleum-based indoor coatings”,Atmospheric Environment,Vol.32,NO.2,pp.231-237,(1998)
17.G.C.Morrison,R.L.Corsi,H.Destaillats,W.W.Nazaroff,J.R.Wells,Indoor Chemistry:Materials,Ventilation Systems,and Occupant Activities,Proceedings of Healthy Buildings,(2006)
18.Hayter,A.J and Dowling M.M, Experimental Design and Emission Modeling for Chamber Experiment, Atmospheric Environment,Vol.27A,p.2225-2234,(1993)
19.Huey-Jen Su, Pei-Chih Wu, et al. , “Exposure Assessment of Indoor Allergens, Endotoxin, and Airborne Fungi for Homes in Southern Taiwan”, Environmental Research Section A 85, 135-144, (2001)
20.H.Levin and A.T.Hodgson,”Voc Concentrations of Interest in North American Offices and Homes”,Proceedings of Healthy Buildings 2006,(2006)
21.J.C.S.Chang and Z.Guo,Characterization of Organic Emissions From a Wood Finishing Product-Wood Stain,Indoor Air,Vol.2,pp.146-153,(1992)
22.JOHN C. S. CHANG, BRUCE A. TICHENOR, ZHISHI Guo AND KENNETH A. KREBS,Substrate Effects on VOC Emissions from a Latex Paint,indoor Air; 7: 241-247,(1997)
23.J.S.Zhang,G..Nong,C.Y.Shaw,J.M.Wang,Measurements of volatile organic compound(VOC) emissions from wood stains by using an electronic balance,ASHARE Trans.105.Part1,(1999)
24.Levin H,et al. Building materials and indoor air quality. OCCUPATIONAL MEDICINE. (4):67-93,(1989)
25.Little,J.C.,A.T.Hodgson,andA.J.Gadgil. “Modeling emissions of volatile organic compounds from new carpet”,Atmospheric Environment,Vol.28,pp.227-234,(1994)
26.L. Antonelli,E. Mapelli,A. Strini,T. Cerulli,R. Leoni and S. Stella,Laboratory and real scale comparative study of benzyl alcohol emissions from a two-component epoxy paint,Proceedings of the 9th International Conference on Indoor Air Quality and Climate – Indoor Air 2002,(2002)
27.Molhave L., “Indoor Air Pollution Due To Organic Gases and Vapors of Solvents in Building Materials”, Environment International, Vol.8, p.117-127. , (1982)
28.Matthews, T.G., Wilson D.L., Thompson, A.J., Mason, M.A., Bailey, S.N., and Nelms, L.H., terlaboratory Comparison of Formaldehyde Emission from Particle Board Underlayment in Small Scale Environment Chambers, Journal of the Air Pollution Control Association, Vol. 37, p1320, (1987).
29.M. Maroni et al., “Indoor Air Quality”, pp. 443-444, (1995).
30.Nielsen,The importance of building materials and building construction to SBS,(1998)
31.O.A.Seppanen and W.J.Fisk,”Summary of responses to ventilation”,Indoor Air vol.14 p102-118,(2004)
32.O.A.Seppanen ,W.J.Fisk and O.H.Lei,Ventilation and performance in office work,Indoor Air;16:p28-36,(2004)
33.Pawel Wargocki, The Effects of Outdoor Air Supply Rate in an Office on Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity , Indoor Air, (10),222-236, (2000)
34.P. Wargocki, J. Sundell, W. Bischof, G. Brundrett, P.O. Fanger, F.Gyntelberg, S.O. Hanssen, P. Harrison, A. Pickering, O. Seppa¨nen, P.Wouters, The role of ventilation in non-industrial indoor environments.Proceedings of Indoor Air 2002, the 9th Indoor Air Quality and Climate, Monterey, USA, (2002).
35.P.-C. Wu, Y.-Y. Li, C.-C. Lee,C.-M. Chiang,Li, H.-J. Su ,risk assessment of formaldehyde in typical office building in Taiwan, Indoor air 2003; 13:1-15,(2003)
36.P.-C. Wu, Y.-Y. Li, C.-M. Chiang, C.-Y. Huang, C.-C. Lee, F.-C. Li, H.-J. Su ,Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings,Indoor Air,Volume15 ,Issue 1 ,Page 19-26 ,January ,(2005)
37.Richard A. Wadden & Peter A. Scheff, “Indoor Air Pollution”, pp.105-107, (1982).
38.Shair and Heitner,Reprinted by permission of the American Chemical Society from Environment Science and Technology,(1974).
39.Seifert, B. and Abraham, H.J., “Indoor air concentrations of benzene and some other aromatic hydrocarbons”, Ecotoxicology and Environmental safety, 6, p.190-192,(1982)
40.Sterling,E.M.et.al.,ASHRAE Transition V91 Pt13 611-622,(1985).
41.Spark,L.E.,Tichenor,B.A.,and change,J.,Guo,Z.,Gas-Phase Mass Transfer Model for Predicing Volatile Organic Compound(VOC) Emission Rates from Indoor Pollutant Source,Indoor Air,Vol.6,p.31-40,(1996)
42.Seppa¨ nen, OA, Fisk, WJ, Mendell, MJ. Association of ventilation rates and CO2-concentrations with health and other responses in commercial and institutional buildings, Indoor Air, 9, 252–274,(1999)
43.Tapani Tuomi; Bernt Engström; Raimo Niemelä; Juha Svinhufvud; Kari Reijula, ,Emission of ozone and organic volatiles from a selection of laser printers and photocopiers, Applied Occupational and Environmental Hygiene, 15:8, 629 – 634,(2000).
44.T. Mitamuraa,, H. Yoshinob, H. Osawac, Y. Kuwasawac, Investigation of indoor air quality and ventilation rate for sick houses inJapan, Healthy Buildings,P.217-223, (2003).
45.Wolkoff, P. ,Clausen, P.A,Wilkins, C.K.,Nielsen, G.D., Formation of Strong Airway Irritants in Terpene/Ozone Mixtures, Indoor Air,10:82-91,(2000).
46.Weschler, C.J., “Ozone in indoor environments concentration and chemistry.” Indoor Air 10: 269-288,(2000).
47.X.Yang,Q.Chen,J.Zeng, J.S.Zhang,C.YShaw,A mass transfer model for simulating volatile organic compound emissions from“wet”coating materials applied to absorptive substrates,International Journal of Heat and Mass Transfer 44 ,p1803-1815,(2001)
48.Yang,X, “Study of Building Material Emissions and Indoor Air Quality” Ph.D.Thesis.Department of Architecture,MIT,Cambridge,MA 02139-4307
49.Zhihua Fan, Paul Lioy, Charles Weschler et al., Ozone-Initiated Reactions with Mixtures of Volatile Organic Compounds under Simulated Indoor Conditions, Environ. Sci. Technol.37, 1811-1821,(2003).
50.Zhang LZ, Liu JL. Modeling VOCs emissions in the room with a single-zone multi-component multi-layer technique. Building and Environment;39:523–31,(2004)
51.Zuraimi, M.S., Tham, K.W., Chew, F.T., Ooi, P.L.,The effect of ventilation strategies of child care centers on indoor air quality and respiratory health of children in Singapore.Indoor Air, 317-327, (2007).

中文部份(依中文姓氏第一個字筆劃排序)
1.中華民國空氣品質監測報告,(2006)
2.內政部建築研究所,病態建築診斷機制建立計畫,(2007)
3.行政院環境保護署,〝空氣檢驗分析方法建立與驗證-空氣中揮發有機化合物檢驗方法驗證〞,EPA-85-3305-09-02,(1996)
4.行政院環境保護署,〝空氣中揮發性有機化合物檢測方法-不�袗�採樣筒/氣相層析質譜儀法〞,NIEA A715.11B,( 2000).
5.江哲銘、王文安、周伯丞,建築室內環境保健控制綜合指標之研究,內政部建築研究所,(1999)
6.江哲銘、李俊璋,〝塗料類建材有機逸散物資料庫之建立〞,內政部建築研究所,(2002)
7.江哲銘、李俊璋,〝建材有機逸散物資料庫之建立—地板類建材〞,內政部建築研究所,(2003)
8.江哲銘,全尺寸建材逸散模擬實驗室標準檢測作業程序之研究,內政部建研所,(2005)
9.江哲銘、李彥頤、邵文政、蘇慧貞,相關裝修變因對辦公空間揮發性有機污染物濃度影響分析,建築學報第51期,p1~21,(2005)
10.任憶安、吳萬益、陳麗琴、塗三賢,台灣木質地板市場調查分析,台灣林業科學1997,12(4):451-458,(1997)
11.李芝珊,居家環境和辦公大樓室內空氣品質調查評估,環保署,(1998)
12.李彥頤、江哲銘,辦公空間室內空氣品質管制策略之研究,成大博論,pp.21-36,(2004)
13.李昭興,辦公空間相關變數對揮發性有機化物質濃度影響之研究-以台灣辦公空間為例,成大碩論,(2002)
14.林信旭、江哲銘,以二氧化碳與甲醛污染物探討有效通風控制之研究,成大碩論,pp.58-59,(2002)
15.邵文政,「建材揮發性有機化合物管制策略之研究」,成大建研所博士論文,(2006)
16.沈哲儀,「不同外氣引入量對全尺寸複合木地板揮發性有機物質移除效率之研究」,成大建研所碩士論文,(2007)
17.陳東榮、江哲銘,住宅室內空氣品質(CO、CO2、PM10)現場測定與評估探討,成大建研所碩士論文,(1993)
18.陳念組、江哲銘,建築開口部裝設導風板對自然通風之效益,成大博論,(2007)
19.陳丁于,台灣地區室內環境因子對建材揮發性有機物質逸散行為影響之研究,成大建研所碩士論文,(2002)
20.陳振誠,「台灣本土氣候下換氣率影響建材有機物質逸散特性之研究-以合板及清漆為例」,成大建研所碩士論文,(2004)
21.陳家鋒,「複層建材揮發性有機物質逸散特性之研究-以溶劑型接著劑為例」,成大建研所碩士論文,(2005)
22.張志成、周淑梅,建築室內逸散物質檢測分析研究(一),(1999)
23.經濟部工業局 工業污染防治季刊 July. No.87, (2003)
24.綠建材解說與評估手冊,內政部建築研究所,(2007)
25.劉僑育,「室內不同燈源對於Terepenes化合物與臭氧反應生成二次有機氣膠影響之研究」,國立高雄第一科技大學環境與安全衛生工程所碩士論文,(2006)
26.賴耿陽,多孔材料學(Pore Structure properties of materials),復漢,(1990)
27.鍾基強、吳友烈、陳建郎、陳志豪,通風系統最佳耗能與生命週期及健康風險平衡之研究,行政院國家科學委員會研究計畫,(2005)
28.蘇慧貞、江哲銘、李俊璋,高雄市辦公大樓之室內空氣品質調查與健康危害之評估,高雄市政府環境保護局,(1999)
29.蘇慧貞、江哲銘、李俊璋,室內空氣品質標準於不同建築物之試行評估及管制策略研定,行政院環境保護署專題委託研究計畫,p.31-p.33,(2000)
30.蘇慧貞、江哲銘,室內空氣品質檢測方法之研究,中華民國建築學會「建築學報」第51期,春季號,(2003)
31.龔大瑋,「精油薰燒溢散物及其潛在的氣狀及粒狀二次污染物之定性及定量分析研究」,成大建研所碩士論文,(2006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top