跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊榮
研究生(外文):Chun-Jung Chen
論文名稱:應用小波轉換於結構損傷偵測之研究
論文名稱(外文):A Study of Structural Damage Detection Using Wavelet Transform
指導教授:江達雲
指導教授(外文):Dar-Yun Chiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:59
中文關鍵詞:結構損傷偵測小波轉換
外文關鍵詞:wavelet transformstructural damage detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文利用小波轉換針對結構響應訊號含有雜訊影響的情況下進行結構損傷偵測分析,先利用小波良好的時頻解析能力偵測出結構損傷發生的時刻,並利用系統識別理論配合二階段損傷偵測法進行結構損傷位置和損傷情況之分析。本文提出「損傷能見度」指標,以區別損傷信號和雜訊,使小波偵測方法可以有效地標定損傷發生時間。在進行損傷位置標定時,吾人提出模態曲率的改良作法並配合小波轉換使能更有效地標定損傷位置。最後進行損傷情況評估,針對可能損傷的位置分別計算Lipschitz指數估測其損傷程度。數值模擬分析結果顯示,本文所提出的結構損傷偵測分析法在含雜訊的情況下仍具有良好的精確性。
In this thesis, structural damage detection analysis is studied by means of wavelet transform. It offers an alternative and flexible way of providing time-frequency information when structural damage occurred in detecting time. In the process of damage detection, a two-step method combination with system identification technique is employed. The damaged visibility method could be distinct from noise and damaged signal during the structural damage occurred within the detecting time. A modification to the conventional mode shape curvature method combination with wavelet transform is proposed to improve the efficiency of wavelet detective method. As a result, the possibly damaged locations in a structure can reliably be located. Lastly, the damage extent of possibly damaged locations is then evaluated using the Lipschitz exponent. Numerical simulation results show that the proposed method is accurate under noisy conditions.
目錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 V

第一章 緒論1
1-1引言1
1-2基於系統識別之結構損傷偵測分析法1
1-3文獻回顧3
1-4研究目的與方法7
1-5論文架構8

第二章 小波理論與結構損傷偵測應用9
2-1引言9
2-2小波轉換理論10
2-3信號奇異性檢測16

第三章 基於小波理論的結構損傷偵測方法19
3-1引言19
3-2偵測結構損傷發生時間20
3-2-1利用小波偵測結構損傷發生時間的方法20
3-2-2分析訊號時小波尺度的選擇21
3-2-3針對雜訊的處理方法21
3-3偵測結構損傷位置和損傷情況評估23
3-3-1針對雜訊的處理方法25

第四章 數值模擬27
4-1引言27
4-2鏈模型之損傷偵測分析28
4-3非均勻鏈模型之損傷偵測分析30

第五章 結論32

參考文獻36
[1]Scott, W. D., Charles, R. F., and Michael, B. P, “A
Summary Review of Viration-based Damage Identification Method”, The Shock and Vibration Digest, Vol.30(2), pp91-105, 1998.
[2]Morlet, J., Arens G., Fourgeau E., and Giard D. “Wave Propagation and Sampling Theory.” Geophysics Vol.47, pp.203-221, 1982.
[3]Morlet, J. “ Sampling Theory and Wave Propagation.” NATO ASI Series, Issues in Acoustic Signal/Image processing and Recognition Vol.1, pp.233-261, 1983.
[4]Meyer, Y., “Ondettes et Functions Splines”, Lectures given at the University of Torino, Italy, 1986.
[5]Daubechies, I.,“Orthonormal bases of compactly supported wavelets”, Communications on Pure and Applied Mathematics, Vol.41, pp909-996, 1988.
[6]Mallat, S., “A Theory for Multiresolution Signal Decomposition:The wavelet Representaion”, IEEE Trans. ON PAMI, Vol.11, pp674-693, 1989.
[7]Staszewski, W. J., and Tomlinson, G. R. “Application of the Wavelet Transform to Fault Detection in a Spur Gear”, Mechanical systems and Singal Processing, Vol 8(3), pp289-307, May 1994.
[8]Wang, W. J., and McFadden, P. D. “Application of Wavelets to Gear Box Vibration Signals For Fault Detection”, Journal of Sound and Vibration, Vol.192(5), pp927-939, 1996.
[9]Corbin, M., Hera, A., and Hou, Z. K. “Locating Damage Regions Using Wavelet Approach”, Department of Mechanical Engineering Worcester Polytechnic Institute., 2000.
[10]Hera, A., Hou, Z. K. “Application of Wavelet Approach for ASCE Structure Health Monitoring Benchmark Studies”, Journal of engineering Mechanics, ASCE, January 2004.
[11]Surace, C., and Ruototo, R. “Crack Detection of a Beam Using The Wavelet Transform”, int. Modal Analysis Conf., 12 th, pp1141-1147, 1994.
[12]Liew, K. M., and Wang, Q. “Application of Wavelet Theory for Crack Identification In Structures”, Journal of Engineering Mechanics, Vol.124(2), pp121-244, February, 1998.
[13]Wang, Q., and Deng, X. “Damage Detection with Spatial Wavelets”, International Journal of Solids and Structures, Vol.36, pp3443-3468, 1999.
[14]Hong, J.-C., Kim, Y. Y., Lee, H. C., and Lee, Y. W. “Damage Detection Using the Lipschitz Exponet Estimated by the Wavelet Transform:Applications to Vibraion Modes of a Beam”, International Journal of Solids and Structures, Vol.39, pp1803-1816, 2002.
[15]Douka, E., Loutridis, S., and Trochidis, A. “Crack Identification In Plates Using Wavelet Analysis”, Journal of Sound and Vibration, Vol.270, pp279-295, 2004.
[16]Yen, G. G.,Lin K. C., “Wavelet Packet Feature Extraction for Vibration Monitoring.” IEEE Transactions of Industrial Electronics, Vol.47(3), pp650-667, June 2000.
[17]Sun, Z.,Chang, C.C. “Structure Damage Assessment Based on Wavelet Packet Transform”, Journal of Structure Engineering, Vol.128(10), pp1354-pp1361, October, 2002.
[18]Quek, S. T.,Wang, L. Z., and Ong, K. H. “Practical Issues in the Detection of Damage in Beans Using Wavelets”, Smart Mater. Struct, Vol.10(5), pp1009-1017, August 2001.
[19]江達雲, 賴文一, “二階段損傷偵測分析法”, 中國航空太空學會, 第三十卷第一期, 第19-26頁, 民國八十七年.
[20]張祐誠, “ 二階段結構損傷偵測分析方法之研究”, 碩士論文, 國立成功大學航空太空工程研究所, 2006.
[21]Mallat, S.,A Wavelet Tour of Signal Processing, Academic Press, New york, 1999.
[22]Julius, S. B., and Allan, G. P.,Random data:analysis and measurement procedures, Wiley-Interscience, New York, 2002
[23]Pandey, A. K., Biswas, M., and Samman, M. M. “Damage Detection From Changes In Curvature Mode Shape.”, Journal of Sound and Vibration, Vol.145(2), pp321-332, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top