跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:伍世浩
研究生(外文):Shie-Haw Ng
論文名稱:氣助式霧化應用於甲醇重組器製氫之研究
論文名稱(外文):Hydrogen Generation in Methanol Reformer by Pneumatic Atomizer Feeding
指導教授:賴維祥賴維祥引用關係
指導教授(外文):Wei-Hsiang Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:蒸氣重組甲醇重組器氣助式霧化燃料電池
外文關鍵詞:Pneumatic NebulizationMethanol ReformerFuel CellSteam Reforming
相關次數:
  • 被引用被引用:2
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC)在近幾年的快速發展刺激了供氫領域上的研究。碳氫化合物藉由重組反應能產出高濃度的氫氣以及燃料再填充上的便利,能有效的利用於小型PEMFC的供氫系統。甲醇因其重組溫度低對水有良好的可溶混性以及含硫量低而成為非常適合的原料。本研究的目的是設計製造一套體積小、效率高、重量輕、啟動快的甲醇重組器模組,體積約500 cm3,內部整合的功能包含甲醇儲存、進料裝置、燃料預熱區、重組反應區。改進傳統之加熱蒸發使甲醇氣化方式,而採用氣體助霧化方式進料,進料經霧化後,顆粒會變小且分散平均,最小平均粒徑可達到SMD=5.6 μm,於燃料的加熱。本研究以蒸氣重組為主,針對不通水對甲醇莫耳比(S/C)、加熱溫度及攜帶氣體量來觀察重組器的性能表現。在S/C=1.5,攜帶氣體流量8 LPM ,加熱溫度設置在400 ℃時有較佳的性能表現。產出氣體中氫氣濃度達38%,氫氣莫耳產生率達到0.25 mole/min,而甲醇轉換率約40%。
The rapid development of Proton Exchange Membrane Fuel Cell (PEMFC) in recent years has stimulated research in hydrogen supply. Hydrocarbon with its high energy density and instant recharge of fuel, enable it to be hydrogen source for the miniature fuel cell. Methanol, among hydrocarbons, becomes the most suitable fuel. Since the methanol is characterized by low reforming temperature, good miscibility with water and low content of sulfur compounds. The principal aim of this study is to design and manufacture a set of methanol reformer system that is small in volume, high efficiency, light weight, and rapid cold start, with its volume is about 500cm3, functioned with fuel storage, fuel inlet, preheat, and reformation. Traditional methanol heat-to-vapor method is improved by pneumatic nebulizer. Nebulized inlet gas will be diminished in tiny volume,D32 is about 5.6 μm. Fuel would be vaporized quickly so that the inlet gas mixture will be heated easily. This study focus on investigating the performance of steam-reformer due to the effect from steam-to-methanol molar ratio(S/C), heating temperature, and flow rate of carrier gas. Reformer has its optimal performance under operating condition which S/C=1.5, 400℃heating temperature, and 8 LPM carrier gas flow rate. Molar concentration of hydrogen in the produced gas to reach 38%, and its molar production rate is 0.25 mole/min, methanol conversion nearly 40%.
致謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
符號說明 IX
第1章 緒論 1
1.1 前言 1
1.1.1 重組器簡介 3
1.1.2 霧化簡介 4
1.2 研究動機 5
1.3 重組系統設計目標 7
1.4 文獻回顧 9
第2章 基礎原理 13
2.1 甲醇重組基本原理 13
2.2 氣助式霧化原理 15
第3章 實驗方法與設備 19
3.1 實驗流程 19
3.1.1 霧化實驗流程 19
3.1.2 重組實驗流程 19
3.2 重組器本體與周邊架構 20
3.2.1 重組器設計 20
3.2.2 重組器快速原型製作 22
3.2.3 重組器加工 23
3.2.4 重組觸媒 26
3.3 實驗設備 27
3.3.1 燃料與氣體供應設備 29
3.3.2 加熱及溫控系統 30
3.3.3 溫度擷取系統 31
3.3.4 氣體取樣系統 32
3.4 量測與分析系統 34
3.4.1 雷射粒徑繞射分析儀 34
3.4.2 排放氣體測定器 36
3.4.3 氣相層析儀 37
3.5 實驗參數 41
3.6 實驗準備 41
3.6.1 氣相層析儀校正曲線製作 41
3.6.2 調配實驗用燃料 43
3.6.3 甲醇轉換率的計算與比較 44
3.7 實驗步驟 46
3.7.1 霧化實驗 46
3.7.2 重組實驗 47
第4章 實驗結果與討論 48
4.1 氮氣攜帶量對霧化進料的影響 48
4.2 氮氣攜帶量對蒸氣重組反應的影響 54
4.3 加熱溫度對蒸氣重組反應的影響 59
4.4 不同S/C比對蒸氣重組反應的影響 64
第5章 結論與未來工作 69
5.1 結論 69
5.2 未來工作 71
參考文獻 72
自述 74
1.W. A. Stanley, “Direct Energy Conversion,” Allyn and Bacon Inc., Boston, 1982.
2.J. W. Tester, E.M. Drake, M. J. Driscoll, M. W. Golay, W. A. Peters, Sustainable Energy, The MIT Press, 2005.
3.S. S. Sandhua, Y. A. Saifa, J.P. Fellnerb, “A reformer performance model for fuel cell applications,” Journal of Power Sources 140, pp. 88–102, 2005.
4.A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publication Corporation, 1989.
5.陳泓政, “燃料電池用之甲醇重組器氫氣產生研究,” 碩士論文, 國立成功大學航空太空工程學系, 2002.
6.吳國華,“超音波霧化於燃料電池甲醇重組器製氫之研究,” 碩士論文, 國立成功大學航空太空工程學系, 2003.
7.B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction work,” Applied Catalysis A:General, 179 (1999), pp. 21-29.
8.T. Take, T. Yachi, M. Tomura, C. Kiyohara, T. Ishino, H. Kameyama , “Cu-Zn/Al2O3/Al-Plate Catalyst for a methanol reformer,” Journal of Chemical Engineering Of Japan, 36, pp. 271-276, 2003.
9.宋隆裕, “燃料電池用甲醇重組器之測試研究,” 能源季刊, 第二十四卷, 第一期, pp. 69~88, 民國83年.
10.黃大仁, “小型甲醇重組器技術開發-期末報告,” 工業技術研究院能資所委託研究計畫, 民國89年.
11.S. Ahmed, R. Kumar, M. Krumpelt, “Methanol Partial Oxidation Reformer,” United States Patent, Patent Number 5,942,346, 1999.
12.A. Y. Tonkovich, S. Perry, Y. Wang, D. Qiu, T. LaPlante, W. A. Rogers, “Microchannel process technology for compact methane steam reforming ,” Journal of Chemical Engineering Science, 59, pp. 22-23, 2004.
13.B. Lindström, L. J. Pettersson, “Development of a methanol fuelled reformer for fuel cell applications,” Journal of Power Sources, 118, pp.71-78, 2003.
14.G. G. Park et al., “Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems,” Journal of Power Sources, 145, pp.702-706, 2005.
15.C. Y. Huang, Y.-M. Sun, C.-Y. Chou, and C.-C. Su, “Performance of catalysts CuO-ZnO-Al2O3, CuO-ZnO-Al2O3-Pt-Rh, and Pt-Rh in a small reformer for hydrogen generation,” Journal of Power Sources, 166, pp.450-457, 2006.
16.C. Pan, R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, H. A. Hjulmand, and A. B. Jensen, “Integration of high temperature PEM fuel cells with a methanol reformer,” Journal of Power Sources, 145, pp.392-398, 2005.
17.盧昭暉, 林弘民, “使用電子控制式噴嘴於燃料電池用甲醇重組器之研究,” 燃燒研討會, 2004.
18.H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.8, pp.61-92, 1982.
19.L L.Bayvel, Z. Orzechowskim, “Atomization and Spray,” Taylor & Francis, 1993.
20.S. W. Smye, H. M. Norwood, and J. M. Littlewood, “A mathematical model of some aspects of jet nebuliser performance,” Clinical Physics and Physiological Measurement, 12, pp. 289, 1991.
21.C. Reisner, R. K. Katial, B. B. Bartelson, A. Buchmeir, L. J. Rosenwasser, and H. S. Nelson, “Characterization of aerosol output from various nebulizer/compressor combinations,” Annals Of Allergy, Asthma, & Immunology, 2000.
22.J.G. Conley, H.L. Marcus, November, “Rapid Prototyping and Solid Free Form Fabrication,” Journal of Manufacturing Science and Engineering, 119, pp.811-816, 1997
23.C. K. Chua, K. F. Leong, “Rapid Prototyping-Principles and Applications in Manufacturing,” John Wiley & Sons(Asia), Pte Ltd, 1997.
24.孫逸民等,“儀器分析,” 全威圖書有限公司, 2000.
25.SUPELCO, “Packed Column GC Application Guide,” SUPELCO, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top