跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李志升
研究生(外文):Chi-Seng Lee
論文名稱:最佳化增穩自動駕駛於無人飛機之實現
論文名稱(外文):The Realization of Optimal Stability Augmentation Autopilot for Unmanned Air Vehicle
指導教授:蕭飛賓
指導教授(外文):Fei-Bin Hsiao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:151
中文關鍵詞:飛機線性模型增穩自動駕駛系統識別線性二次型高斯無人飛機
外文關鍵詞:system identificationUAVLQGstability augmentation autopilot
相關次數:
  • 被引用被引用:7
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
國立成功大學無人载具與微衛星實驗室(RMRL)正在進行其最新長滯空無人飛機系統─黑面琵鷺計畫之研發工作。該計畫最終目標是建立一套低成本、簡單、可靠的無人飛機系統並完成一項跨海90公里之飛行展示。此論文的架構主要包含實現該計劃目標所需之基礎系統建構。基本上,此論文可分為三大部分:無人飛機系統軟硬體之建設,飛機線性模型之系統識別,以及以線性二次型高斯(LQG)理論為基礎之增穩自動駕駛設計與實現。其中,系統識別先用子空間識別(subspace identification)找出初步模型。之後此模型將被餵入迭代式的預測誤差法(prediction error method)去取得更精確的飛機模型。線性二次型高斯自動駕駛則是結合線性二次型調節器(LQR)與卡爾曼率波器(Kalman filter)的最佳化控制器。最後所得之縱向和橫向控制器成功於飛行測試中獲得驗證。
The Remotely Piloted Vehicle and Microsatellite Research Laboratory (RMRL) of National Cheng Kung University, Taiwan is currently working on the development of its latest endurance Unmanned Aerial Vehicle (UAV) system, which is designated as the Spoonbill project. The ultimate goal of the project is to develop a low cost, simple, and reliable UAV system and perform a cross-sea flight demonstration which would cover a round-trip distance of approximately 90km. The framework of this thesis embodies the fundamental efforts in terms of system development towards the realization of the project’s primary goal. In essence, this thesis may be treated in three major parts: development of the UAV system hardware and software architectures, system identification to obtain the aircraft linear state space model, and synthesis of stability augmentation autopilots based on linear quadratic Gaussian (LQG) design. In particular, subspace identification method is used to obtain an initial model which would be fed into the recursive prediction error method algorithm in order to arrive at further refined models. The LQG autopilots are synthesized by combining linear quadratic regulator and the Kalman filter. The resulting longitudinal and lateral autopilots are presented and were successfully validated in actual flight tests.
ACKNOWLEDGMENTS.............................................iii
CONTENTS.....................................................iv
LIST OF TABLES..............................................vii
LIST OF FIGURES............................................viii
NOMENCLATURE................................................xii

CHAPTER I INTRODUCTION.......................................1
1.1 Background of the Spoonbill Project.......................3
1.2 Motivations and Objectives................................4
1.3 Literature Reviews........................................5
1.4 Layout of Dissertation....................................8

CHAPTER II AIRCRAFT MODELING................................10
2.1 Reference Frames.........................................10
2.2 Sign Conventions.........................................11
2.3 Linearization of Aircraft Equations of Motion............12

CHAPTER III SPOONBILL UAV SYSTEM CONFIGURATION..............19
3.1 Aircraft Description.....................................19
3.1.1 Airframe Design....................................19
3.1.2 Propulsion System..................................25
3.1.3 Aircraft Performance...............................28
3.2 Onboard Avionics System..................................30
3.2.1 System Architecture................................30
3.2.2 Data Acquisition and Flight Control Program........33
3.2.3 Attitude Heading Reference System..................35
3.2.4 Global Positioning System (GPS) Receiver...........35
3.2.5 Power Requirements.................................36
3.3 Ground Control Station...................................37

CHAPTER IV SYSTEM IDENTIFICATION............................40
4.1 Aircraft System Identification...........................40
4.2 Input Maneuver Design....................................42
4.3 Data Smoothing...........................................48
4.4 Subspace Identification Method...........................53
4.5 Prediction Error Method..................................55
4.6 Identification Results...................................57
4.6.1 Longitudinal Model: Identification.................63
4.6.2 Lateral Model: Identification......................67
4.7 Model Validation.........................................70
4.7.1 Longitudinal Model: Validation.....................71
4.7.2 Lateral Model: Validation..........................74
4.8 Further Discussion.......................................76

CHAPTER V SYNTHESIS OF LQG AUTOPILOT........................78
5.1 Full State Feedback Linear Quadratic Regulator...........78
5.2 Optimal Observer: Kalman Filter..........................81
5.3 Linear Quadratic Gaussian (LQG) Regulator................84
5.4 Stability Augmentation Autopilot Design and Simulation...86
5.4.1 Longitudinal Autopilot.............................89
5.4.2 Lateral Autopilot..................................94
5.5 Flight Test Results......................................99
5.5.1 Longitudinal Autopilot Alone......................101
5.5.2 Lateral Autopilot Alone...........................106
5.5.3 Combined Longitudinal/Lateral Autopilot...........108

CHAPTER VI CONCLUDING REMARKS..............................117
6.1 Summary of Contributions................................118
6.2 Future Works............................................119

REFERENCES..................................................120
APPENDIX A..................................................123
APPENDIX B..................................................130
APPENDIX C..................................................131
APPENDIX D..................................................147
PUBLICATION LIST............................................150
VITA........................................................151
[1] Office of the Secretary of Defense, 2005, “Unmanned Aircraft Systems (UAS) Roadmap, 2005-2030,” Technical Report, OSD.
[2] Chan, W. L., Lee, C. S., Hsu, C. W., Hu, Y. T., Hsiao, F. B., 2006, “Preliminary Design and Analysis of an Endurance UAV,” in Proceeding of the 5th Taiwan-Indonesia Workshop on Aeronautical Science, Technology and Industry, Tainan, Taiwan, Nov. 13-16, 2006.
[3] Hsiao, F. B., Lai, Y. C., Tenn, H. K., Hsieh, S. Y., Chen, C. C., and Chan, W. L., 2006, “The Development of an Unmanned Aerial Vehicle System with Surveillance, Watch, Autonomous Flight and Navigation Capability,” in Proceeding of the 21st Bristol UAV Systems Conference, Bristol, U.K.
[4] Hsiao, F. B., Hsieh, S. Y., Chan, W. L., Lai, Y. C., 2008, “Engine Speed and Velocity Controller Development for Small Unmanned Aerial Vehicle,” Journal of Aircraft, Vol. 45, No. 2, pp. 725-728.
[5] Hallbreg, E., Kaminer, I., and Pascoal, A., 1999, “Development of a Flight Test System for Unmanned Air Vehicles,” IEEE Control System Magazine, Volume 19, Number 1, pp. 55-65.
[6] Jang, J. S., and Tomlin, C. J., 2001, “Autopilot design for the Stanford DragonFly UAV: Validation through Hardware-in-the-loop Simulation,” in Proceedings of the AIAA, GNC Conference, Montreal, Canada.
[7] Jang, J. S., 2003, “Nonlinear Control Using Discrete-time Dynamic Inversion Under Input Saturation: Theory and Experiment on the Stanford DragonFly UAVs,” Ph.D Thesis, Department of Aeronautics and Astronautics, Stanford University.
[8] Jang, J. S., and Tomlin, C. J., 2003, “Longitudinal Stability Augmentation System Design for the DragonFly UAV Using a Single GPS Receiver,” in Proceedings of he AIAA GNC Conference, Austin, TX.
[9] Jang, J. S., and Tomlin, C. J., 2002, “Design and Implementation of a Low Cost, Hierarchical and Modular Avionics Architecture for the DragonFly UAVs,” in Proceedings of he AIAA GNC Conference, Monterey.
[10] Reo, R., and Tomlin, C. J., 2003, “Computing Danger Zones for Provably Safe Closely Spaced Parallel Approaches,” Journal of Guidance, Control and Dynamics, 26(3): 434-442.
[11] Inalhan, G., Gao, C., and Wang, S. H., 1991, “Decentralized Optimization, with Application to Multiple Aircraft Coordination,” in Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV.
[12] Joo, S., Ippolito, C., Al-Ali, K., and Yeh, Y.-H., 2008, “Vision Aided Inertial Navigation with Measurement Delay for Fixed-Wing Unmanned Aerial Vehicle Landing,” in Proceedings of IEEE Aerospace Conference 2008.
[13] How, P. J., Michini, B., McGrew, J., and Levine, D., 2008, “Aerobatic Flight Control Experiments using RAVEN,” in Proceedings of 23rd Bristol International Unmanned Air Vehicle Systems Conference, Bristol, United Kingdom.
[14] Cho, A., Kim, J., Lee, S., Choi, S., Lee, B., and Kim, B., 2007, “Fully Automatic Taxiing, Takeoff and Landing of a UAV only with a Single-Antenna GPS Receiver,” in Proceedings of AIAA 2007 Conference and Exhibit, Rohnert Park, California.
[15] Selig, M., 1995, “Summary of Low-Speed Airfoil Data – Vol. 3,” SoarTech Publications, Virginia.
[16] Anderson, J. D., 1999, “Aircraft Performance and Design,” International Edition, WCB/McGraw-Hill.
[17] Klein, V., Morelli, E. A., 2006, “Aircraft System Identification: theory and Practice,” American Institute of Aeronautics and Astronautics.
[18] Nelson, R. C., 1998, “Flight Stability and Automatic Control, Second Edition,” WCB/McGraw-Hill, Chapter 3.
[19] Morelli, E. A., 1995, “Estimating Noise Charateristics from Flight Test Data Using Optimal Fourier Smoothing,” Journal of Aircraft, Vol. 32, No. 4, July-August, pp. 689-695.
[20] Van Overschee, P., and De Moor, B., 1996, “Subspace Identification of Linear Systems: Theory, Implementation, Applications,” Kluwer Academic Publishers.
[21] Katayama, T., 2005, “Subspace Methods for System Identification,” Springer-Verlag London Limited.
[22] Van Overschee, P., and De Moor, B., 1996, “N4SID – Subspace Algorithm for the Identification of Combined Deterministic – Stochastic Systems,” Automatica, Vol. 30, No. 1, pp. 75-93.
[23] Ljung, L., 1999, “System Identification – Theory for the User (2nd Edition),” Prentice Hall.
[24] Verdult, V., Lovera, M., and Verhaegen, M., 2004, “Identification of linear parameter-varying state-space models with application to helicopter rotor dynamics,” International Journal of Control, Vol. 77, No. 13, pp. 1149-1159.
[25] Stevens, B. L., and Lewis, F. L., 2003, “Aircraft Control and Simulation, 2nd Edition,” John Wiley & Sons, Inc.
[26] Lewis, F. L., 1986, “Optimal Control,” New York, Wiley.
[27] Franklin, G. F., and Powell, J. D., 1980, “Digital Control of Dynamic Systems,” Addison-Wesley Publishing Company.
[28] Bryson, A. E., Jr., and Ho, Y.-C., 1975, “Applied Optimal Control,” New York, Hemisphere.
[29] Kwakernaak, H., and Sivan, R., 1972, “Linear Optimal Control Systems,” New York: Wiley.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊