跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/01 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李冠憲
研究生(外文):Guan-Hsien Li
論文名稱:多孔噴流霧化機制及其特性研究
論文名稱(外文):Atomization Mechanism and Performance of Multiple Liquid Jets
指導教授:王覺寬
指導教授(外文):Muh-Rong Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:172
中文關鍵詞:壓力式交互作用多孔噴流霧化
外文關鍵詞:Multiple JetsPressure atomizerAtomizationInteractions
相關次數:
  • 被引用被引用:2
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討不同孔徑之多孔微型噴嘴之霧化機制及其霧化特性,微型噴頭大小孔徑分別為200 μm、100 μm,共振腔直徑為3000 μm,共振腔高度為400 μm,孔距在400 μm到2000 μm區間內,工作流體為純水。研究項目包括多孔噴頭不同孔徑微液束之暫態演變過程及其動態特性,並探討大小孔間有無配置流道之連通效應對其霧化特性之影響。本研究以IDT高速攝影機拍攝不同孔徑微液束在交互作用效應下之演變過程,以Insitec RT-Sizer粒徑分析儀量測噴霧平均粒徑及粒度分佈。研究結果顯示,在不同孔徑微液柱之暫態演變中,液體初始噴出會先在出口處形成半月型之液膜,此液膜隨時間成長,因液體慣性力逐漸增大,故液體從球狀體拉伸成為柱球體,並在噴嘴出口附近形成錐體、頸部、頭部之結構,前端液體受到表面張力效應影響,內縮為近似球狀體之型態,隨著此球狀體向下運動,會產生破裂、碰撞結合等現象,最後完成液束之噴射之過程。實驗結果顯示,不同孔徑之微液束噴射過程會有噴射延遲之現象,且隨著孔距的變大,噴射延遲時間亦隨之遞增。研究結果亦顯示,微液柱不穩定現象隨液體出口雷諾數而變化,會產生軸對稱不穩定模態、螺旋不穩定模態、及混合不穩定模態,液束破裂行為由此三種不穩定模態主導。此外,孔距縮小會增加不同孔徑液體間之交互作用,促使液束具有更不穩定之破裂過程。若在不同孔徑之雙孔間配置一流道設計,會產生液體連通之交互效應,激發液束之不穩定能量,故會產生較佳之霧化效果。噴霧特性量測結果顯示,多孔微噴嘴所呈現之噴霧結構皆為實心噴霧,噴霧濃度與SMD皆由噴霧中心往外圍遞減。若雙孔孔距變小,因為液體交互作用下之不穩定能量遞增,故在壓力125bar下,具有共振效應下噴霧平均粒徑SMD可由9.04μm遞減至5.49μm,並且噴霧產量可達15.21kg/hr。若在孔口間加上連通流道設計,可增進不穩定破裂模態之強度,形成更微小之液滴,故在噴射壓力125bar下噴霧粒徑進一步降為5.38μm,且噴霧產量達14.40kg/hr。顯示此種微噴嘴霧化性能與噴霧產量皆優於傳統柴油噴嘴及空蝕效應下之壓力式噴嘴。
Enhancement of atomization performance of pressure atomizer in multi-apertured nozzles was investigated in this research. The orifice plates are designed with multiple orifices having diameters 200 μm and 100 μm, with pitches ranging from 400 μm to 2000 μm. The diameter and height of the resonator are 3000 μm and 400 μm, respectively. Results show that the liquids first formed a meniscus around the outlet of the larger orifice because of the strong effects of the surface tension associated the micro-jet. The meniscus was transformed to the spherical shape as the inertia of the liquid was increased with time. It was disintegrated into droplets with collision and recombination of droplet during the transient processes. Finally it became a steady liquid jet. Results also showed the evolution of instability modes of the liquid jets as the pressure was increased. There is a time lag between the liquid jets issued from different orifices. The time lag increased as the pitch between orifices was increased. The instability modes of both liquid jets can be described by three different modes depending on injection pressure. It was also found that the SMD of the spray decreased from 9.04μm to 5.49μm as the pitch was reduced to 400μm under the injection pressure of 125bar using double orifices plate with a resonator. The production rate of the spray was 15.21kg/hr in this case. It is also found that the cross-link between the orifices enhance the interaction between two liquid jets. It, in turns, enhances the performance of atomization under lower pressure. The SMD of the spray was lowered to 5.38μm and the production rate was increased to 14.40kg/hr under injection pressure of 125bar. It indicates that the new atomizer performs better as comparing to the traditional diesel-type atomizers and the atomizers with cavitation effects.
中文摘要
英文摘要
誌謝
目錄 I
表目錄 V
圖目錄 VI
符號說明 XIII
第一章 緒論 1
1-1 簡介 1
1-2 文獻回顧 2
1-2-1 霧化之原理 2
1-2-2 液體碎化過程 4
1-2-3 噴霧流場中之空氣動力現象 8
1-2-4 噴霧流場中液滴破裂模式 10
1-2-5 壓力式霧化器 12
1-2-6多孔式霧化器 17
1-2-7 液束不穩定破裂模式 18
1-3 研究動機與目的 20
第二章 實驗設備及儀器 48
2-1 實驗設備 48
2-1-1 液束觀測台架 48
2-1-2 噴嘴性能測試台架 49
2-1-3 高壓液體供應系統 49
2-1-4 抽氣整流系統 50
2-1-5 霧化裝置 50
2-2 量測儀器 51
2-2-1 RT-Sizer粒徑分析儀 51
2-2-2 RT-Sizer粒徑分析儀校正 52
2-2-3 攝影器材及影像處理系統 53
2-3主要量測參數 53
第三章 實驗步驟及方法 67
3-1 實驗量測條件 67
3-2 流量的量測 67
3-3 微管流之視流觀測 68
3-4 RT-Sizer粒徑分析儀的量測 69
3-5 數據取樣與分析 70
第四章 結果與討論 73
4-1 多孔噴頭微液束噴流之視流實驗 73
4-1-1 多孔噴頭大小孔微液束噴射之暫態演變過程 74
4-1-2 孔數對微液束速度之影響 79
4-1-3 不同孔徑微液束動態特性隨雷諾數之變化 81
4-1-4 多孔噴頭孔間流道交互作用下之微液柱暫態演變過程 87
4-2多孔噴頭霧化器之霧化特性 90
4-2-1 噴頭孔距比對霧化特性之影響 90
4-2-1-1 噴頭孔距比對霧化特性之影響 91
4-2-1-2 孔間流道對霧化特性之影響 93
4-2-1-3 液體噴射壓力對噴霧平均粒徑之影響 95
4-2-2多孔噴頭孔數對霧化性能之影響 96
4-2-2-1 孔距比對霧化特性之影響 97
4-2-2-2 孔數對噴霧產生率之影響 99
4-2-2-3 孔數對噴嘴霧化效率之影響 101
4-3多孔噴頭霧化器在共振效應下之霧化特性 103
4-3-1 孔距比對霧化特性之影響 103
4-3-2 孔間流道對霧化特性之影響 106
4-3-3 孔數對噴嘴霧化效率之影響 108
第五章 結論 162
參考文獻 165
自述 171
1.古晉光, “加濕工程應用手冊”, 翰寧股份有限公司, pp.10-28, 2000。
2.A. H. Lefebvre, “Gas Turbine Combustion,” Chapter10, Hemisphere Publishing Corporation, New York, 1983.
3.R. A. Castleman Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol.6, pp.369-376, 1930.
4.N. Dombrowski and W. R. Johns, ”The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol.18, pp.203-214, 1963.
5.B. E. Stapper, W. A. Sowa and G. S. Samuelsen, “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol.114, pp.39-45, 1992.
6.C.H. Lee, Rolf D. Reitz, “An experimental study of the effect of gas density on the distortion and breakup mechanism of dropsin high speed gas stream,” International Journal of Multiphase Flow 26(2000) 229-244.
7.R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International) on Combustion, Rein-hold, New York, pp.687-701, 1957.
8.M.C. Butler Ellis and C.R. Tuck, “How Adjuvants Influence Spray Formation with Different Hydraulic Nozzle,” Crop Protection, Vol.18, pp.101-109, 1999.
9.P.C.H Miller, M.C. Butler Ellis, “Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers,” Crop Protection 19, pp.609-615, 2000.
10.M.C. Butler Ellis, C.R. Tuck and P,C.H. Miller, “ How Surface Tension of Surfactant Solution Influences the Characteristics of Sprays Produced by Hydraulic Noozle Used for Pesticide Application,” Colloids and Surface A: Physicochemical and Engineering Aspects, Vol. 180, pp.267-276, 2001.
11.G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott, ”A Note on the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets,” J. Fluid Mech., Vol.57, part 4, pp.671-672, 1973.
12.A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
13.H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.8, pp.61-92, 1982.
14.許耀仁, “氣衝式平面噴嘴液膜霧化特性之研究,” 國立成功大學碩士論文, 1993。
15.高韶壕, “微型噴嘴單束噴霧流在側吹下之粒子分布,” 國立成功大學碩士論文, 2003。
16.F.R. Zhang, S. Wakabayashi and N. Tokuoka, “ The Spray Structure from Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray of Swirl Atomizer), ” Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineerings, Part B, Vol. 60, No. 570, pp. 675-680, 1994.
17.J.S. Chin, D Nickolaus and A.H. Lefebvre, “ Influence of Distance on the Spray Characteristics of Pressure-Swirl Atomizers, “ ASME, Journal of Engineering for Gas Turbines and Power, Vol. 108, pp. 219-224, 1986.
18.趙金容, “相差都卜勒粒子分析儀應用於燃油噴嘴特性之研究,” 國立成功大學碩士論文, 1988。
19.蔡清洲, “漩渦噴流中氣液兩相交互作用實驗分析,” 國立成功大學碩士論文, 1989。
20.洪嘉宏, ”中空錐形噴霧中連續相及離散相之動力特性研究“, 國立成功大學博士論文, 1991。
21.楊坤和, “研究型氣助式噴霧特性研究,” 國立成功大學博士論文, 1992。
22.賴維祥, “噴霧發展過程中粒子之輸送現象及其紊流條調制之研究,” 國立成功大學博士論文, 1995。
23.徐明生, “雙流體式平面噴嘴霧化特性之研究,” 國立成功大學碩士論文, 1995。
24.曾安康, “超微噴嘴液滴在噴流中之演變過程,” 國立成功大學碩士論文, 2001。
25.C.K. Chiang, J.Y. Poo, and T.H. Lin “ Number of Result Drops In Binary Liquid Drop Collision “ Picast,Cofference Proceedings Vol. II, pp. 577-589, 1994.
26.J.D. McTaggart and R. List, “ Collision and Breakup of Water Drops at Terminal Velocity,” J. of the Atmospheric Sciences, col. 32, pp. 1401-1411.
27.J.R. Adam, N.R. Lindblad and C.D. Hendricks, “ The Collision, Coalescence, and Disruption of Water Droplets, “ J. Appl. Phys. , Vol. 39, pp. 5173-5180, 1968.
28.A.M. Podvysotsky and A.A. Shraiber, “ Coalescence and Breakup of Drops in Two-Phase Flows,” Imt. J. Multiphase Flow, Vol. 10, No. 2, pp. 195-209, 1984.
29.N. Ashgrize and P. Grivi, “ Coalescence Collision of Fuel Droplets,” AIAA-87-0135.
30.Q.V. Nguyen, R.H. Rangle and D. Dunn-Rankin, “ Measurement and Prediction of Trajectories and Collision of Droplets,” Int. J. Multiphase Flow, Vol. 10, No. 2, pp. 159-177, 1991.
31.C.Hass Frederick, “Stability of Droplets Suddenly Exposed to a High Velocity Gas Stream,” A.I.CH.E. Journal Page, 920, November, 1964.
32.A.R. Jones, “ Design Optimization of a Large Pressure-Jet Atomizer for Power Plant,” Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, Wis. , pp. 181-185, 1982.
33.H.C. Simmons and C.F. Harding, “Some Effects on Using Water as a Test Fluid in Fuel Noozle Spray Analysis,” ASME Paper 80-GT-90, 1980.
34.H.C. Simmons, “ The Prediction of Sauter Mean Diameter for Gas Turbine Fuel Nozzles of Different Types, “ ASME, Journal of Engineering for Power, Vol. 102, pp. 646-652, 1980.
35.J.B. Kendy, “ High Weber Number SMD Correlations for Pressure Atomizers,” Transactions of ASME Journal of Engineering for Gas Turbines and Power, Vol. 108, pp. 191-195, 1986.
36.X.F. Wang and A.H. Lefebvre, “Mean Drop Sizes from Pressure Swirl Nozzles,” Journal of Propulsion and Power, Vol. 3, No. 1, pp. 11-18, 1987.
37.S.M. De Corso, “Effect of Ambient and Fuel Pressure on Spray Drop Size,” ASME, Journal of Engineering for Power, Vol. 82, pp. 10, 1960.
38.S.M. De Corso and G.A. Kemeny, “ Effect of Ambient and Fuel Pressure on Nozzle Spray Angle,” ASME, Journal of Engineering for Power, Vol. 79, No. 3, pp. 607-615, 1957.
39.J. Ortman and A.H. Lefebvre, “ Fuel Distributions from Pressure Swirl Atomizers,” Journal of Propulsion and Power, Vol. 1, No. 1, pp.11-15, 1985.
40.M.M. Elkotb, N.M. Rafat and M.A. Hanna, “The Influence of Swirl Atomizer Geometry on the Atomization Performance,” Proceedings of the 1st International Conference on Liquid Atomization and Spray System, Tokyo, pp. 109-115, 1978.
41.M. Suyari and A.H. Lefebvre, “Film Thickness Mesaurements in A Simplex Swirl Atomizer,” Journal of Propulsion and Power, Vol. 2, No. 6, pp. 528-533, 1986.
42.P.S. Kutty, M.V. Narasimhan and K. Narayanaswamy, “Design and Prediction of Discharge Rate, Cone Angle and Aircore Diameter of Swirl Chamber Atomizers,” Proceedings of 1st International Conference on Liquid Atomization and Spray Systems, pp. 93-100, 1978.
43.K.R. Babu, M.V. Narasimhan and K. Narayanaswamy, “Correlation for Prediction of Discharge Rate, Cone Angle and Aircore Diameter of Swirl Spray Atomizers,” Proceedings of 2nd International Conference on Liquid Atomizer and Spray Systems, pp. 91-97, 1982.
44.W.C. Nieuwkamp, “Flow Analysis of a Hoolow Cone Nozzle with Potential Flow Theory,” Proceedings of 3rd International Conference on Liquid Atomization and Spray Systems, pp. IIIC/1/1-9, 1985.
45.N.K. Rizk and A.H. L EFEBVRE, “Internal Flow Characteristics of Simplex Swirl Atomization,” AIAA-84-0124, 1984.
46.林富祈, “壓力式渦漩霧化器噴霧錐角控制之研究,” 國立成功大學碩士論文, 1997。
47.K. Ramamurthi and T.John Tharakan, “Atomization Characteristics of Swirled Annular Liquid Sheets,” ICLASS-“97, 1997.
48.M.R. Wang, F.C. Lin, M.S. Sheu and C.K Wang, “Control of Spray Angle in a Pressure Swirling Atomizer,” Trans. Of the Aeronautical and Astronautical Society of ROC, Vol. 31, No. 2, pp. 99-107, 1999.
49.N. Tamaki, Y. Ishida and A. Higashi, “Effects of Ambient Pressures on Atomization of Spray and Application to Actual Diesel Nozzle,”CD-ROM ICLASS, 06-011, 2006.
50.Takayuki Ohta, Yoshiro Hayashi, Masahiro Saito, Tomohiko Furuhata and Masataka ARAI, “Effect of Nozzle Hole Shape on Diesel Spray Impinged on a Wall,” CD-ROM ICLASS D-1-#009, 2007.
51.Norihiko Iki, “Water Spray from Several Tens Micrometer Holes,” CD-ROM ICLASS # E4-023, 2007.
52.薛勇瑋, “具共振效應之壓力式微型噴嘴霧化特性,” 國立成功大學碩士論文, 2006。
53.R. Bocanegra, D. Gal�鴨, M. M�黔quez, I. G. Loscertales and
A. Barrero, ”Electrosprays Emitted from an Array of Holes,” Aerosol Science, 36, pp.1387-1399, 2005.
54.黃耀廷, “多噴頭霧化器在空蝕共振效應下之霧化機制及特性研究,”國立成功大學碩士論文, 2007。
55.Hyun Kyu Suh, Hyung Jun Kim and Young Taek Seo, “Effect of Split injection on the Diesel Fuel Atomization in a Group-Hole Nozzle,” CD-ROM ICLASS D3-#013, 2007.
56.J. W. Hoyt and J. J. Taylor, “Waves on Water Jets,” J. Fluid Mech., vol. 83, part 1, pp.119-127, 1977.
57.H. Q. Yang, “Asymmetric Instability of a Liquid Jet,” Phys. Fluids A, Vol.4, No. 4, pp.681-689, April 1992
58.P.-K. Wu and G. M. Faeth, “Onset and End of Drop Formation along the Surface of Turbulent Liquid Jets in Still Gases,” American Institute of Physics, 1995
59.Z. Dai, W. -H. Chou and G. M. Faeth, “Drop formation due to Turbulent Primary Breakup at the Free Surface of Plane Liquid Wall Jets,” Physics of Fluids, Volume 10, Number 5, 1998
60.K. A. Sallam, Z. Dai and G. M. Faeth, “Liquid Breakup at the Surface of Turbulent Round Liquid Jets in Still Gases,” International Journal of Multiphase Flow,28, pp.427-449, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊