跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖基宏
研究生(外文):Chi-hung Liao
論文名稱:整合型金屬粉末霧化與分級製程研究
論文名稱(外文):Combined Processes of Atomization and Classification in Production of Metal Powder with a Twin-Fluid Atomizer
指導教授:王覺寬
指導教授(外文):Muh-Rong Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:175
中文關鍵詞:分級金屬噴霧基板
外文關鍵詞:substrateclassificationmolten spray
相關次數:
  • 被引用被引用:1
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本研究以實驗的方法探討金屬粉末霧化與氣動篩分製程的整合。首先探討金屬噴霧在基板衝擊效應下之霧化特性及粉末分佈情形,所探討之參數包括:基板與噴嘴之距離、金屬噴射與氣體霧化之壓差、金屬熔湯之溫度以及不同位置量測之結果。其次利用SiO2粉末探討氣動篩分機制,操作參數包括:主流道速度、側流道速度、側流道開口位置,最後整合金屬粉末霧化與氣動篩分機制。實驗結果顯示,金屬粉末平均粒徑在基板與噴嘴間距、壓差、金屬熔湯溫度的影響下,可分別產生6.2μm、5.89μm、4.94μm之微粒。結果亦顯示,氣動篩分裝置藉由主、側流道速度的變化與側流道位置變化可以將粉末進行分級。整合金屬粉末霧化與篩分製程實驗結果顯示,在PN2=4.0bar,PM=1.5bar,H=8mm,15° Substrate,TM=400℃,主流道速度為1m/s,側流道速度為14m/s時,側流道的金屬粉末平均粒徑為4.18μm、Dv90為20.25μm、V0-15為80.03%,顯示此製程可以同時完成金屬粉末霧化與分級之結果,值得加以推廣應用。
This research investigates the combination of the atomization and classification processes in the production of metal powder. The atomization process was performed with the twin-fluid atomizers. The classification process was performed by the impingement of the molten spray on the substrate as well as the aerodynamic effects in the duct of the powder collection device. The parameters of this study include the distance between the atomizer and substrate, pressure of atomization, temperature of melt and the positions of the powder collection device. Results show the mean particle size of the metal powder was lowered down to 6.2μm, 5.89μm and 4.94μm, respectively, under different substrate configurations. The particle size was further lowered down to 4.18μm under the conditions of atomization process as PN2 = 4.0bar, PM = 1.5bar, H = 8mm, TM = 400℃, and under the conditions of the powder collection device with the velocities of primary and secondary channel being 1m/s and 14m/s, respectively. It turns out that Dv90 can be lowered down to 20.25μm and most of the particles is within 15μm, i.e., V0-15 was up to 80.03%. It can be concluded that this technique can be used to produce extra-fine metal powders for various industrial applications.
中文摘要
英文摘要
誌謝
目錄 i
圖目錄 v
符號說明 viii
第一章 緒論 1
1-1 簡介 1
1-2文獻回顧 4
1-2-1液態噴流的碎裂模式相關研究 5
1-2-2 霧化器設計相關研究 7
1-2-2-1 外混式霧化器相關研究 10
1-2-2-2 內混式霧化器相關研究 14
1-2-3 霧化氣體對液態噴流的熱力行為 15
1-2-4 液滴之碰撞行為 16
1-3 研究動機 21
第二章 實驗設備與儀器 24
2-1 實驗設備 24
2-2 實驗量測儀器 27
2-2-1 INSITEC粒徑分析儀 28
2-2-2 Coulter 粒徑分析儀 29
2-2-3 Thermocouple熱電耦 30
2-3 掃描式電子顯微鏡 30
2-4 自動化系統 31
第三章 實驗步驟及方法 33
3-1 液態金屬之溫度控制 33
3-2 微粉末之防護 34
3-3 液態金屬之霧化 35
3-4 基板的衝擊效應 36
3-5 粉末在氣動篩分機制下之分級 36
3-6 粉末顆粒之量測 36
3-7 液態金屬流量的量測 37
3-8 量測條件 37
3-9 INSITEC粒徑分析儀的量測 37
3-10 實驗誤差 38
3-10-1 金屬粉末製備過程所形成之誤差 38
3-10-2 INSITEC粒徑分析儀之儀器誤差 39
3-10-3 Coulter LS230粒徑分析儀之儀器誤差 39
3-10-4 Thermocouple熱電耦量測溫度之誤差 40
第四章 結果與討論 41
4-1量測方法的比較 41
4-2基板與噴嘴之間距對霧化特性之影響 42
4-2-1基板與噴嘴之間距對金屬噴霧平均粒徑之影響 43
4-2-2基板與噴嘴之間距對累積體積百分比之影響 45
4-2-3基板與噴嘴之間距對粒徑體積百分比之影響 46
4-2-4基板與噴嘴之間距對粒度比SR之影響 47
4-3壓差對基板衝擊效應下之金屬噴霧的影響 48
4-3-1壓差對金屬噴霧平均粒徑之影響 48
4-3-2壓差對累積體積百分比之影響 49
4-3-3壓差對粒徑體積百分比之影響V0-15 50
4-3-4壓差對粒徑體積百分比之影響V15-25 50
4-3-5壓差對粒徑體積百分比之影響V25-45 51
4-3-6壓差對粒度比SR之影響 51
4-4金屬熔湯溫度對霧化特性之影響 52
4-4-1金屬熔湯溫度對粉末平均粒徑之影響 52
4-4-2金屬熔湯溫度對累積體積百分比之影響 53
4-4-3金屬熔湯溫度對粒徑體積百分比V0-15之影響 54
4-4-4金屬熔湯溫度對粒徑體積百分比V15-25之影響 54
4-4-5金屬熔湯溫度對粒徑體積百分比V25-45之影響 55
4-4-6金屬熔湯溫度對粒度比SR之影響 55
4-5金屬噴霧在不同位置之霧化特性 56
4-5-1金屬噴霧在不同水平位置的平均粒徑 57
4-5-2金屬噴霧在不同水平位置的累積體積百分比 57
4-5-3金屬噴霧在不同水平位置的粒徑體積百分比 58
4-5-4金屬噴霧在不同垂直位置的平均粒徑 59
4-5-5金屬噴霧在不同垂直位置的累積體積百分比 59
4-5-6金屬噴霧在不同垂直位置的粒徑體積百分比 60
4-6側流道位置對側流道粉末特性之影響 61
4-6-1側流道位置對側流道粉末平均粒徑之影響 61
4-6-2側流道位置對側流道粉末累積體積百分比之影響 62
4-6-3側流道位置對側流道粉末粒徑體積百分比之影響 63
4-7主流道速度對主流道粉末特性之影響 63
4-7-1主流道速度對主流道粉末平均粒徑之影響 64
4-7-2主流道速度對主流道粉末累積體積百分比之影響 64
4-7-3主流道速度對主流道粉末粒徑體積百分比之影響 65
4-7-4主流道速度對主流道粉末粒度比之影響 67
4-8側流道速度對主流道粉末特性之影響 67
4-8-1側流道速度對主流道粉末平均粒徑之影響 68
4-8-2側流道速度對主流道粉末累積體積百分比之影響 68
4-8-3側流道速度對主流道粒徑體積百分比之影響 69
4-8-4側流道速度對主流道粉末粒度比之影響 71
4-9側流道速度對側流道粉末特性之影響 71
4-9-1側流道速度對側流道粉末平均粒徑之影響 71
4-9-2側流道速度對側流道粉末累積體積百分比之影響 72
4-9-3側流道速度對側流道粉末粒徑體積百分比之影響 73
4-9-4側流道速度對側流道粉末粒度比之影響 74
第五章 結論 75
參考文獻 78
自述 159
[1]馮慶芬,“粉末冶金學”,新文京開發出版有限公司,第一章,民國91年5月。
[2]Zhang Shuguang, “A Novel Ultrasonic Atomization Atomization Process for Producing Spherical Metal Powder,” Acta Metallurgica Sinica, Vol.38, No.8, pp.888-892, 2002。
[3]馮慶芬,“粉末冶金學”,新文京開發出版有限公司,第二章,民國91年5月。
[4]徐仁輝,“粉末冶金概論”,新文京開發出版有限公司,第三章,民國91年9月。
[5]Lefebvre, A. H., “Atomization and Spray,” Hemisphere Publishing Corporation, New York, pp.1-25 , 1989.
[6]Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[7]Lefebvre, A. H., “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
[8]Dombrowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
[9]Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
[10]Fraser, R. P., “Liquid Fuel Atomization, ” Sixth Symposium﹙International﹚on Combustion, Rein-hold, New York, pp.687-701, 1957.
[11]Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No.7901/2-0, 1979.
[12]Cubberly and William, H. Metal Handbook, nineth ed., Vol. 7, Powder Metallurgy, American Society for Metal, 1984.
[13]Tallmadge, J. A., “Powder Production by Gas and Water Atomization of Liquid Metals,” Powder Metallurgy Processing, Kuhn, H. S. and Lawley, A. (eds.), Academic Press, New York, NY, 1978, pp. 1-32.
[14]Tamura, K. and Takeda, T., “Production of Copper Powder by Atomization,” Trans. Nat. Res. Inst. Metals (Japan), 1963, vol. 5,pp. 252-256.
[15]German and Randall, M., Powder Metallurgy Science, Metal Powder Industries Federation, Princeton, N.J., 1994.
[16]Nukiyama, S. and Tanasawa, Y., “Experiments on Atomization of Liquids in an Airstream,” Transaction of JSME, Vol. 5, No. 18, pp. 68-75, 1939.
[17]Gretzinger, J. and Marshall, W.R. Jr., “Characteristics of Pneumatic Atomization,” AIChE Journal, Vol. 7, No. 2, pp. 312-318, Jun. 1961.
[18]Kim, K.Y., and Marshall, W.R. Jr., “Drop-Size Distributions from Pneumatic Atomizers,” AIChE Journal, Vol. 17, No. 3, pp. 575-584, May 1971.
[19]Tate, R.W., “Droplet Size Distribution Data for Internal-Mixing Pneumatic Atomizers,” Proceeding of the 3rd ICLASS," pp. IIC/1/1-13, 1985.
[20]Rizkalla, A. A. and Lefebvre A.H., “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp. 173-179, April 1975.
[21]Rizkalla, A. A. and Lefebvre A.H., “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol. 97, pp. 316-320, 1975
[22]Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp.1139-1142, 1983.
[23]Beck, J., Lefebvre, A. H. and Koblish, T., “Air Blast Atomization at Conditions of Low Air Velocity,” Paper No AIAA- 89-0217, 1989.
[24]Beck, J. E., Lefebvre A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
[25]Beck, J. E. and Lefebvre A. H., “Air Blast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol. 7, NO.2, March-April, 1991.
[26]Aligner, M. and Wittig, S., “Swirl and Counter Swirl Effects in Prefilming Air Blast Atomization,” Trans. ASME, J. Eng. Power, Vol. 102, pp.706-710, 1980.
[27]許耀仁,“氣衝式平面噴嘴液膜霧化特性之研究”,國立成功大學航太所碩士論文,1993。
[28]Sattelmayer, T. and Witting, S., ”Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp.465-472, 1986.
[29]Rizk, N.K. and Lefebvre, A.H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME vol. 106, July 1984.
[30]Press, C., Gupta, A.K. and Semerjian, H.G., “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer, ” HTD-vol.104, pp.111-119, 1988.
[31]Kevin, S. Chen and Lefebvre, A. H., “Spray Cone Angle of Effervescent Atomizers, ” Atomization and Sprays, vol. 4, pp.291-301, 1994.
[32]楊坤和,“研究型氣助式噴嘴之噴霧特性研究”,國立成功大學航太所碩士論文,1992。
[33]徐明生,“雙流體式平面噴嘴霧化特性之研究”,國立成功大學航太所碩士論文,1995。
[34]王承光,“氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究”,國立成功大學航太所碩士論文,1996。
[35]Mates, S P and Settles, G S “High-speed imaging of liquid metal atomization by two different close-coupled nozzles,” Advances in Powder Metallurgy and Particulate Materials--1996. Vol. 1; Washington, DC; USA; 16-21 June 1996. pp. 1.67-1.80. 1996.
[36]Iver E. Anderson, Robert L. Terpstra, “Progress toward gas atomization processing with increased uniformity and control,” Materials Science and Engineering Vol.326, Issue.1, pp.101-109, March 2002
[37]康煜昌,“平面型液態金屬霧化器之霧化特性研究”,國立成功大學航太所碩士論文,1998。
[38]楊舒然,“強制式液態金屬霧化器之控制參數研究”,國立成功大學航太所碩士論文,1999。
[39]楊哲睿,“液態金屬在噴嘴不同長寬比下之霧化特性”,國立成功大學航太所碩士論文,2002。
[40]郭振展,“液態金屬在噴嘴低長寬比下之霧化特性”,國立成功大學航太所碩士論文,2003。
[41]陳哲萍,“超微粒錫粉銲料之噴霧製造研究”,國立成功大學航太所碩士論文,2004。
[42]Ünal, A., “Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminium Powders,” Materials Science and Technology, Vol.3, pp.1029-1039, 1987.
[43]Sedat Őzbilen, “Influence of atomizing gas on particle shape of Al and Mg powder,” Powder Technology. , Vol.102, Issue.2, Mar. 3, pp. 109-119, 1999.
[44]Ashgriz, N. and Givi, P., “Binary Collision Dynamics of Fuel Droplets,” Heat and Fluid Flow, Vol.8, No.3, pp.205-210, 1987.
[45]Chiang,C. K., Poo,J. Y. and Lin,T. H., “Number of Result Drops in Binary Liquid Drop Collision,” Picast, Cofference Proceedings Vol.Ⅱ, pp.577-589, 1994.
[46]Orme, Melissa, “Experiment on Droplet Collisions, Bounce, Coalescence and Disruption,” Prog. Energy Combust. Sci. Vol.23, pp.65-79, 1997.
[47]林明龍,“噴霧粒子在側噴流衝擊下之動態特性”,國立成功大學航太所碩士論文,2001。
[48]高韶豪,“微型噴嘴單束噴霧流在側吹下之粒子分布”,國立成功大學航太所碩士論文,2003。
[49]陳品任,“金屬噴霧在衝擊氣流作用下之霧化特性”,國立成功大學航太所碩士論文,2005。
[50]Rein, M. “Phenomena of liquid droplet impact,” Fluid Dyn. Res., Vol.12, pp.61-93, 1993.
[51] Manzello, S.L., and Yang, J.C., “An experimental investigation of water droplet impingement on a heat wax surface,” International Journal of Heat and Mass Transfer, Vol.47, pp.1701-1709, 2004.
[52]徐明生,“內混式平面型液態金屬噴嘴之霧化機構及其在噴覆成型之應用”,國立成功大學航太所博士論文,1999。
[53]Haferl.S, V. Butty, D. Poulikakos, J. Giannakouros, K Boomsma, C.M. Megaridis, V. Nayagam”Freezing fynamics of molten solder droplets impacting onto flat substrates in reduced gravity,” International Journal of Heat and Mass Transfer, Vol.44, pp.3513-3528, 2001.
[54]Haferl.S, D. Poulikakos, “Experimental investigation of the transient impact fluid dynamic and solidification of a molten microdroplet pile up,” International Journal of Heat and Mass Transfer, Vol.46, pp.535-550, 2003.
[55]Newbery, A. P., Rayment, T., and Grant, P.S., “A Particle image Velocity Investigation of In-flight and Deposition Behaviour of Steel Droplets during Electric Arc Sprayforming,” Materials Science and Engineering A Vol.383, pp.137-145, 2004.
[56]黃建敦,“金屬噴霧在基板衝擊效應下之霧化特性”,國立成功大學航太所碩士論文,2006。
[57]張皓昀,“基板衝擊對超微粒金屬粉末噴霧製程之效應”,國立成功大學航太所碩士論文,2007。
[58]王覺寬,康煜昌,徐明生,楊舒然,“氣助式平面型液態金屬霧化器特性研究”,40th Conference on Aero. and Astro. of ROC, Taichung, Taiwan, ROC, Dec, 1998
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊