跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張柏雄
研究生(外文):Po-hsiung Chang
論文名稱:多孔性介質應用於固態氧化物燃料電池尾氣續燃器設計之模擬研究
論文名稱(外文):Simulation of the Porous Medium in Sequential Burner Design for Solid Oxide Fuel Cell
指導教授:賴維祥賴維祥引用關係
指導教授(外文):Wei-hsiang Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:110
中文關鍵詞:數值模擬固態氧化物燃料電池多孔性介質
外文關鍵詞:Solid Oxide Fuel Cellporoussimulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的是利用數值方法,模擬氫氣與空氣之混合物在二維軸對稱多孔性介質燃燒室中之燃燒現象。文中針對目前使用之多孔性介質燃燒室進行模擬,所需的入口條件和實驗相同,藉此比較模擬與實驗之間的誤差。
模擬時採用FLUENT套裝軟體進行運算;化學反應的部份則採用氫氣的單步化學反應式模擬,並考慮輻射熱傳導方程式,同時以STANJAN計算燃燒後產物的平衡狀態作為輔助驗證之工具。在等壓等焓過程中,計算純氫/空氣燃燒的絕熱火焰溫度(Adiabatic Flame Temperature)。模擬結果之最高溫將與絕熱火焰溫度作比較,以確保模擬結果之正確性。
本研究成功的完成多孔性介質燃燒室之物理模式建立,模擬的結果與實驗數據之間的誤差5%以內。由於目前實驗條件的當量比介於0.27~0.31之間,顯示出當量比對於火焰位置的影響並不明顯。文中也探討了不同尺寸的燃燒室對火焰的溫度、火焰位置的影響。尺寸縮小為1/ 倍時,模擬之最高溫與原尺寸相同,不過火焰位置接近燃燒室出口;當尺寸放大 /1倍時,火焰位置恰好在上、下游區之界面上,但最高溫較原尺寸約低100 K。
This study mainly adapts the numerical methodology to simulate combustion phenomenon of the mixture of hydrogen and mixed air in two-dimensional porous burner. The input data for simulations come from the results of full-scale experiments. Therefore, the inaccuracy between simulations and experiments can be compared.
In this simulation, a commercial software, FLUENT, is used to conduct calculations, and the radiation heat transfer equations are included. In chemical reaction, the single-step chemical equation of hydrogen is considered in our simulations, and the other software, STANJAN, will be the other tool to known the equilibrium status of products after burning. It also facilitates the calculations about the adiabatic flame temperature of the mixture of pure hydrogen and mixed air in the iso-enthalpic and isobaric process.
This study has established successfully the physical model of porous burner, and the simulation result has shown the inaccuracy between simulations and experiments is within 5 %. Because the recent equivalence ratio is between 0.27~0.31, it shows that the equivalence ratio doesn’t affect the flame location very much. This study also discusses how different-sized burners affect the flame temperature and flame location. When the geometry of burner is decreased 1/ times, the highest temperature from simulations is the same with the one of original burner, and the flame location is much closer to the burner outlet; when the geometry of burner is increased /1 times, the flame location is located between the surface of up- and down-stream region, and the highest temperature is lower approximately 100 K than the one of original burner.
表目錄............iii
圖目錄............iv
符號說明......... viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機 12
第二章 理論模式 13
2.1 基本理論 13
2.2 基本假設 15
2.3 統御方程式 16
2.3.1 連續方程式 17
2.3.2 動量方程式 17
2.3.3 濃度方程式 18
2.3.4 能量方程式 18
2.3.5 狀態方程式 18
2.4 邊界條件 19
2.5 參數定義 19
2.5.2 熱傳導係數 20
2.5.3 消散係數 21
2.5.4 散射比 21
2.5.5 光學厚度 21
2.5.6 層流 21
2.6 壓力降 23
2.7 燃燒模擬方法 25
2.7.1 化學反應式 26
2.8 熱輻射 27
2.9 網格結構 31
2.10 多孔性介質材料之物理參數 33
第三章 數值模擬 35
3.1 SIMPLE法 36
3.2 離散方法 37
3.3 離散方程式求解法及鬆弛因子 38
第四章 結果與討論 40
4.1 網格獨立 41
4.2 純氫燃燒 43
4.2.1 解決方法 46
4.2.2 氫氣的燃燒反應率為 46
4.2.3 忽略熱分解效應(Dissociation) 49
4.2.4 層流驗證 50
4.3 不同氫氣/空氣混合比 53
4.3.1 H2-19 54
4.3.2 H2-18 55
4.3.3 H2-17 56
4.3.4 H2-16 57
4.3.5 H2-15 58
4.3.6 H2-14 60
4.3.7 H2-13 61
4.3.8 H2-12 62
4.3.9 H2-11 63
4.3.10 H2-10 65
4.3.11 H2-9 66
4.3.12 H2-8 67
4.4 不同混合比之比較 69
4.4.1 溫型因子(Pattern Factor) 71
4.5 不同尺寸對於多孔性介質燃燒室之影響 75
4.5.1 原尺寸1/2倍 75
4.5.2 原尺寸1/ 倍 78
4.5.3 原尺寸 /1倍 81
4.5.4 原尺寸2倍 84
第五章 結論 88
第六章 未來工作 89
Babkin, V. S., Korzhavin, A. A., and Bunev, V. A., “Propagation of Premixed Gaseous Explosion Flames in Porous Media,” Combustion and Flame, Vol. 87, pp. 182-190, 1991.

Barra, A. J., Diepvens, G., Ellzey, J. L., Henneke, M. R., “Numerical Study of the Effects of Material Properties on Flame Stabilization in a Porous Burner,” Combustion and Flame, Vol. 134, pp. 369-379, 2003a.

Barra, A. J., Ellzey, J. L., and Henneke, M. R., “A Computational Study of Heat Recirculation in Porous Burners,” Central State / The Combustion Insitiute 2003 Spring Meeitng, Paper B22, Chicago, IL, March 2003b.

Barra, A. J., and Ellzey, J. L., “Heat Recirculation and Heat Transfer in Porous Burners,” Combustion and Flame, Vol. 137, pp. 230-241, 2004.

Brenner, G.., Pickenäcker, K., Pickenäcker, O., Trimis, D., Wawrzinek, K., and Weber, T., “Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media,” Combustion and Flame, Vol. 123, pp. 201-213, 2000.

Chen, Y.-K., Matthews, R. D., and Howell, J. R., “The Effect of Radiation on the Structure of Premixed Flame within a Highly Porous Inert Medium,” in Radiation Phase Change Heat Transfer and Thermal Systems (Edited by Y. Jaluria, V. P. Carey, W. A. Fiveland, and W. Yuen), ASME-HTD, Vol. 81, pp. 35-42, 1987.

Diamantis, D. J., Mastorakos, E., and Goussis, D., A., “Simulation of Premixed Combustion in Porous Media,” Combustion Theory and Modelling, Vol. 6, pp. 383-411, 2002.

Echigo, R., “Effective Energy Conversion Method Between Gas Enthalpy and Thermal Radiation and Application to Industrial Furnaces,” Proceedings of the Seventh International Heat Transfer Conference, München, Vol. 6, pp. 361-366, 1982.
Echigo, R., Yoshizawa, Y., Hanamura, K., and Tomimura, T., “Analytical and Experimental Studies on Radiative Propagation in Porous Media with Internal Heat Generation,” Proceedings of the Eighth International Heat Transfer Conference, Edited by C. L. Tien, V. P. Carey, J. K. Ferrell, 1986.

Ergun, S., “Fluid Flow through Packed Columns,” Chemical Engineering Progress, Vol. 48, pp. 89-94, 1952.

Fluent 6.2.16 User Manual, 2003.

Hayashi, T. C., Malico, I., and Pereira, J.C. F., “Three-Dimensional Modeling of a Two-Layer Porous Burner for Household Applications,” Computers and Structures, Vol. 82, pp. 1543-1550, 2004.

Henneke, M. R., and Ellzey, J. L., “Modeling of Filtration Combustion in a Packed Bed,” Combustion and Flame, Vol. 117, pp. 832-840, 1999.

Hermann, F., Palsson, J., and Mauss, F., “Combustor Design Analysis for SOFC Off-gases,” Fifth European Solid Oxide Fuel Cell Forum, pp. 961-971, 2002.

Hsu, P.-F., “Analytical and Experimental Study of Combustion in Porous Inert Media,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1991.

Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” ASME/JSME Thermal Engineering Proceedings, Vol. 4. pp. 225-231, 1991.

Hsu, P.-F., Evans, W. D., and Howell, J. R., “Experimental and Numerical Study of Premixed Combustion within Nonhomogeneous Porous Ceramics,” Combustion Science and Technology, Vol. 90, pp. 149-172, 1993.

Hsu, P.-F., and Matthews, R. D., “The Necessity of Using Detailed Kinetics in Models for Premixed Combustion within Porous Media,” Combustion and Flame, Vol. 93, pp. 457-466, 1993.

Ingham, D. B., and Pop, I., Transport Phenomena in Porous Media, Elsevier, 2005.

Jugjai, S., Wongpanit, N., Laoketkan, T., Nokkaew, S., “The Combustion of Liquid Fuels Using a Porous Medium,” Experimental Thermal and Fluid Science, Vol. 26, pp. 15-23, 2002.

Jugjai, S., and Polmart, N., “Enhancement of Evaporation and Combustion of Liquid Fuels through Porous Media,” Experimental Thermal and Fluid Science, Vol. 27, pp. 901-909, 2003.

Jolls, K. R., and Hanratty, T. J., “Transition to Turbulence for Flow through a Dumped Bed of Spheres,” Chemical Engineering Science, Vol. 21, pp. 1185-1190, 1966.

Kaplan, M., and Hall, M. J., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” Experimental Thermal and Fluid Science, Vol. 11, pp. 13-20, 1995.

Khanna, V., Goel, R., and Ellzey, J. L., “Measurement of Emissions and Radiation for Methane Combustion within a Porous Medium Burner,” Combustion Science and Technology, Vol. 99, pp. 133-142, 1994.

Kuo, K. K., Principles of Combustion, Wiley, New York, 1986.

Lefebvre, A, H., “The Role of Fuel Preparation in Low-Emissions Combustion,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 177, pp. 617-654, 1995.

Marbach, T. L., and Agrawal, A. K., “Experimental Study of Surface and Interior Combustion Using Composite Porous Inert Media,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 127, pp. 307-313, 2005.

Mathis, W. M.. and Ellzey, J. E., “Flame Stabilization, Operating Range, and Emissions for Air-Methane Porous Burner,” Combustion Science and Technology, Vol. 175, pp. 825-839, 2003.

Matthew, T. S., and Ellzey, J. L., “Computational and Experimental Study of a Two-Section Porous Burner,” Combustion Science and Technology, Vol. 176, pp. 1171-1187, 2004.

Mills, A. F., Heat Transfer 2nd, Prentice Hall, 1999.

Mital, R., Gore, J. P., and Viskanta, R., “A Study of the Structure of Submerged Reaction Zone in Porous Ceramic Radiant Burners,” Combustion and Flame, Vol. 111, pp, 175-184, 1997.

Mößbauer, S., Pickenäcker, O., Pickenäcker, K., and Trimis, D., “Application of the Porous Burner Technology in Energy- and Heat- Engineering,” Fifth International Conference on Technologies and Combustion for a Clean Environment, Vol. Ⅰ, pp. 519-523, 1999.

Nield, D. A., “A Note on the Modeling of Local Thermal Non-Equilibrium in a Structured Porous Medium,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 4367-4368, 2002.

Rumminger, M. D., Dibble, R. W., Heberle, N. H., and Crosley, D. R., “Gas Temperature Above a Porous Radiant Burner: Comparison of Measurements and Model Predictions,” Proceedings of Combustion Institute, Vol. 26, pp. 1755-1762, 1996.

Sathe, S., B., Peck, R. E., and Tong, T. W., “A Numerical Analysis of Heat Transfer and Combustion in Porous Radiant Burners,” International Journal of Heat and Mass Transfer, Vol. 33, No. 6, pp. 1331-1338, 1990.

Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979a.

Takeno, T., and Sato, K. “A Theoretical and Experimental Study on an Excess Enthalpy Flame,” 7th ICOGER, Gottingen, Germany, 20-24 Aug, 1979b.

Trimis, D., and Durst, F., “Combustion in a Porous Medium-Advances and Application,” Combustion Science and Technology, Vol. 121, pp. 153-168, 1996.

Trimis, D., Durst, F., Pickenäcker, O., Pickenäcker, K., “Porous Medium Combustor versus Combustion Systems with Free Flames,” Advances in Heat Transfer Enhancement and Energy, 1998.

Trimis, D., and Wawrzinek, K., “Flame Stabilization of Highly Diffusive Gas Mixtures in Porous Inert Media,” Journal of Computational and Applied Mechanics, Vol. 5, pp. 367-381, 2004.

Tseng, C.-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1995.

Weinberg, F. J., “Combustion Temperature: The Future?” Nature, Vol. 233, pp. 239-241, 1971.

Zhao, P. H., Chen Y. L., Liu, M. H., Ding, M., and Zhang G.. X., “Numerical Simulation of Laminar Premixed Combustion in a Porous Burner,” Front. Energy Power Eng. China, Vol. 1, pp. 233-238, 2007.

Zhdanok, S., Kennedy, L. A., and Koester, G., “Superadiabatic Combustion of Methane Air Mixtures under Filtration in a Packed Bed,” Combustion and Flame, Vol. 100, pp. 221-231, 1995.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊