跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張崇瑋
研究生(外文):Chung-Wei Chang
論文名稱:順滑模態控制器於空氣彈力系統之應用
論文名稱(外文):Application of Sliding Mode Control to Aeroelastic System
指導教授:陳介力陳介力引用關係
指導教授(外文):Chieh-Li Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:60
中文關鍵詞:順滑模態控制空氣彈力系統
外文關鍵詞:sliding mode controlaeroelastic system
相關次數:
  • 被引用被引用:4
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
空氣彈力系統為一非線性的系統,相對系統的動態模型擁有兩個自由度,分別為振幅及俯仰角。在此結構下,考慮俯仰的非線性項及空氣動力之間的交互作用,將造成空氣彈力系統之不穩定,亦有可能產生渾沌效應或是極限環的振動現象。以往之研究者從空氣動力學、結構、材料性質或加入控制手段以保持系統穩定性。過去空氣彈力系統僅使用單一翼後緣輸入以抑制極限環現象,但僅能選擇振幅及俯仰角其中一個狀態進行控制律設計,如此一來另一個狀態便成為內部動態,而內部動態穩定性將取決於飛行速度及結構參數,非控制輸入可以加以設計及改善。為了改善單一輸入的效能,本文提出利用翼前緣及翼後緣的雙輸入控制法則,以消除內部動態不確定性的影響,對振幅及俯仰角的響應設計也提供了較大的彈性。
強健性控制為近代控制主要研究課題,因為一般受控系統常因外在的干擾或無法考慮的不確定性使得系統在輸出性能和預期的設計有所偏差。本文所利用的控制法為順滑模態控制,以往順滑控制難以實現大部分是因為切跳現象。本文分別以終端順滑模態控制、步階回歸設計之高階順滑模態控制、動態順滑模態控制消除空氣彈力系統所產生的極限環現象並使系統穩定,且控制訊號不具切跳現象。由模擬結果可知,設計之控制律在加入飽和函數後,系統仍可在有限時間內收歛至目標點,保證其穩定性。
A nonlinear control system for the flutter control of an aeroelastic system is considered in this thesis. The dynamic model describes the plunge and the pitch motions of a wing. The interaction of nonlinearity of structural and aerodynamic force will lead to wing instability in forms of fluttering and limit cycle oscillation. The aeroelastic models have a wing section with a single trailing-edge control surface for suppression of limit cycle oscillation. It is well known that for the model with a single control surface, trajectory control of either the plunge displacement or the pitch angle (but not of both) can be achieved with a residual motion induced by the internal dynamics. The internal dynamics of aeroelastic depend on the model parameters including the freestream velocity and the spring constant. Motivated by the limited effectiveness of using single control surface, improvements using both leading- and trailing-edge control surfaces are investigated. Moreover, two control surfaces provide better performance for both the plunge and the pitch responses.
This thesis uses three types of sliding mode control, namely the terminal siding mode control (TSMC), the high order sliding mode control (HOSMC) and the dynamic sliding mode control (DSMC) to achieve system stability and to eliminate the phenomenon of limit cycle response. Compared with the conventional sliding mode control design, the proposed control law preserves not only the robustness of the system but also avoids the chattering phenomenon. Simulation results are presented to show its effectiveness in regulating the response. In spite of controller input saturation, the system can be stabilized using the proposed control approaches.
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號表 VIII

第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 本文大綱 3

第二章 空氣彈力系統與問題描述 4
2.1 空氣彈力系統數學模型 4
2.2 空氣彈力系統之非線性特性 7
2.2.1常見的非線性元件及非線性特性 7
2.2.2 空氣彈力系統非線性特性 12
2.3 空氣彈力系統控制問題 15

第三章 順滑模態控制器設計 16
3.1順滑模態介紹 16
3.1.1 順滑平面的選取與等效控制 16
3.1.2 順滑條件與切換控制 18
3.1.3 順滑控制的強健性 19
3.1.4 順滑控制顫震現象 20
3.2 終端順滑模態控制 21
3.2.1 終端順滑模態控制介紹與設計 21
3.2.2 應用終端順滑模態控制於空氣彈力系統 25
3.3步階回歸設計之高階順滑模態控制 27
3.3.1 步階回歸設計 28
3.3.2 高階順滑模態控制設計 31
3.3.3 應用步階回歸設計之高階順滑模態控制於空氣彈力系統 33
3.4動態順滑模態控制 36
3.4.1 動態順滑模態控制介紹 36
3.4.2 應用動態順滑模態控制於空氣彈力系統 37

第四章 數值模擬與討論 41
4.1模擬結果 41
4.1.1終端順滑控制之模擬結果 41
4.1.2步階回歸設計之高階順滑模態控制之模擬結果 42
4.1.3動態順滑模態控制之模擬結果 49
4.2討論 52

第五章 結論 55
5.1結論 55
5.2未來發展方向 55
Bhoir, N.G., and Singh, S. N., “Control of Unsteady Aeroelastic System via State-Dependent Riccati Equation method”, Journal of Guidance, Control, and Dynamics, Vol. 28, No. 1, 2005, pp. 78-84.

Bhoir, N.G., and Singh, S. N., “Output Feedback Nonlinear Control of an Aeroelastic with Unsteady Aerodynamics”, Aerospace Science and Technology 8(2004)195-205.

Block, J., and Strganac, T. W., “Applied Active Control for Nonlinear Aeroelastic Structure”, Journal of Guidance, Control, and Dynamics, Vol. 21, No. 6, 1998, pp. 838-845.

Chen, M. S. , Chen, C. H. and Yang, F. Y., “An-LTR-observer-based Dynamic Sliding Mode Control for Chattering Reduction ”, Automatica (Journal of IFAC), Volume 43 , Issue 6 (June 2007), pp. 1111-1116

Fung, Y. C., An Introduction to the Theory of Aeroelasticty, Wiley, New York, 1955, pp.207-215.

Gujjula, S, Singh, S. N, and Yim. W., “Adaptive and Neural Control of a Wing Section Using Leading- and Trailing-edge Surfaces”, Aerospace Science and Technology 9(2005)161-171.

Kim, S. H. and Lee, I., “Aeroelastic Analysis of a Flexible Airfoil with a Freeplay Nonlinearity”, Journal of Sound and Vibration 193, 1996, 823–846.

Ko, J., Kurdila, A. J., and Strganac, T. W., “Nonlinear Control of a Prototypical Wing Section with Torsional Nonlinearity”, Journal of Guidance, Control and Dynamics 20(6), 1997, 1181–1189.

Ko, J., Strganac, T. W., and Kurdila, A. J., “Stability and Control of a Structurally Nonlinear Aeroelastic System”, Journal of Guidance, Control, and Dynamics, Vol. 21, No. 5, 1998, pp. 718-725.

Lee, B. H. K., and LeBlanc, P., “Flutter Analysis of a Two-Dimensional Airfoil with cubic Nonlinear Restoring Force” National Aeronautical Establishment, Aeronautical Note 36, National Reserch Counsil (Canada) No.35438, Ottawa, PQ, Canada, 1986.

Lee, B. H. K., Price, S. J., and Wong, Y. S., “Nonlinear aeroelastic analysis of airfoils: Bifurcation and chaos”, Progress in Aerospace Sciences 35, 1999, 205–334.

O'Neill, T. and Strganac, T.W., “Aeroelastic Response of a Rigid Wing Supported by Nonlinear Spring”, Journal of Aircraft 35(4), 1998, 616–622.

Park, K. B., and Tsuji, T., “Terminal Sliding mode control of second-order nonlinear uncertain systems”, International Journal of Robust and Nonlinear control 9, 1999, 769-780.

Platanitis, G. and Strganac, T. W., ” Control of a nonlinear wing section using leading- and trailing-edge surfaces”, Journal of Guidance, Control, and Dynamics, Vol. 27, No. 1, 2004, pp. 52-58.
Price, S. J., Alighanbari, H., and Lee, B. H. K., “The Aeroelastic Response of a Two- dimensional Airfoil with Bilinear and Cubic Nonlinearities”, Journal of Fluids and Structure 9, 1995, 175–193.

Singh, S. N., and Brenner, M.,” Limit Cycle Oscillation and Orbital Stability in Aeroelastic Systems with Torsional Nonlinearity”, Nonlinear Dynamics 31,435-450, 2003

Strganac, T. W., Ko, J., and Thompson, D. E., “Identification and Control of Limit Cycle Oscillations in Aeroelastic Systems”, Journal of Guidance, Control, and Dynamics, Vol. 23, No. 6, 2000, pp. 1127-1133.

Theodorsen, T., and Garrick, I. E., “Mechanism of flutter: A Theoretical and Experiment Investigation of the Flutter Problem”, NACA Rept. 685, 1940.

Yang, S. K., Chen, C.L. and Yau, H. T. “Control of Chaos in Lorenz System”, Chaos, Solitons and Fractals, Volume 13, Number 4, March 2002 , pp. 767-780(14).

Zhao, L. C. and Yang, Z. C.,”Chaotic motions of an airfoil with nonlinear stiffness in incompressible flow”, Journal of Sound and Vibration 128(2), 1990, 245–254.

劉金琨,”滑模變結構控制MATLAB仿真”,清華大學出版社,2005年9月
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top