跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉文雄
研究生(外文):Wen-hsiung Liu
論文名稱:非線性H_inf解耦合控制設計方法於直昇機停懸運動
論文名稱(外文):Nonlinear H_inf Decoupling Control of Helicopter in Hovering
指導教授:楊憲東楊憲東引用關係
指導教授(外文):Ciann-Dong Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:94
外文關鍵詞:hovering controlhelicopterdecoupling controlnonlinear controlparameter uncertaintyrobust controldisturbance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對直昇機六自由度非線性運動,透過非線性H_inf理論設計控制器,並更進一步考慮直昇機本身參數不確定性的變化,如慣性矩變化導因於油料和載重管理。由於直昇機是由非線性效應、直昇機本身不確定性以及外在陣風的干擾等因素,形成一在縱向運動及橫向運動均具有高度複雜之耦合系統,本研究透過其六自由度非線性停懸運動,提出一六自由度非線性H_inf控制器。吾人透過非線性H_inf理論,可證明此種控制器即使在這種高複雜度耦合的系統中,仍能準確地分離出兩個不同的三自由度非線性H_inf控制器,可分別針對平移運動以及旋轉運動作控制。本文証明非線性H_inf理論具備有解耦合控制問題之特性,並以數值模擬得到直昇機在不同級數的陣風影響下所具有之停懸控制表現。其模擬結果顯示,直昇機系統經由吾人設計之控制器的控制,其飛行品質可達到標準1的規格範圍,具備有良好的飛行控制表現,並由此可以得到非線性H_inf控制強健的特性。
This dissertation proposes a new approach to consider the nonlinear H_inf control of hovering aircraft that is described by six-degree-of-freedom nonlinear dynamics with plant uncertainties, which are due to the variation of moments of inertia, and are caused by fuel consumption and/or payload operation. Taking account of nonlinear effect, plant uncertainty, and exogenous disturbances which is caused by wind gust, we show in this dissertation that the six-degree-of-freedom nonlinear H_inf controller can be exactly decoupled into two three-degree-of-freedom controllers. One controller is for translational motion; while the other is for rotational motion. It could be done even when the longitudinal and lateral dynamics of the flight vehicle in hovering is highly nonlinear and severely coupled. In this dissertation, a numerical simulation has proved the decoupling properties of the nonlinear H_inf control system. Simultaneously show that nonlinear H_inf controller can provide good performance and good stability for hovering flight. We also evaluate the flying quality through the simulation. The helicopter flying quality by quickness index is adopted to test the robustness of the H_inf controller. It shows that the controller can maintain the specifications in level-1 standard while Beaufort scale of wind gust changes. Due to the nonlinear H_inf decoupling controls for hovering flight, the system can provide more robustness and have better disturbance rejection abilities.
CONTENTS

ABSTRACT IN CHINESE ……………………………………………………………i
ABSTRACT …………………………………………………………………………ii
ABSTRACT IN CHINESE OF EACH CHAPTER ………………………………iv
CONTENTS ……………………………………………………………………………xi
LIST OF TABLES ……………………………………………………………………xiii
LIST OF FIGURES …………………………………………………………………xiv
NOMENCLATURE ……………………………………………………………xix
CHAPTER 1 INTRODUCTION ……………………………………………………1
1.1 Motivation ……………………………………………………………………2
1.2 Contributions …………………………………………………………………4
1.3 Organization ……………………………………………………………………6
CHAPTER 2 HOVER DYNAMICS WITH PARAMETER UNCERTAINTY .....9
1.1 Hover Dynamics with Parameter Uncertainty …………………………….9
1.2 Determination of Helicopter Control Surface Deflections ………………17
1.3 Wind Gust Model ……………………………………………………………20
1.4 Constraint on Actuator ……………………………………………………24
CHAPTER 3 NONLINEAR H∞ STATE FEEDBACK CONTROL…………33
CHAPTER 4 NONLINEAR H∞ HELICOPTER HOVER CONTROL…………39
4.1 Six Degree-of-Freedom Hover Control ……………………………………39
4.2 Three Degree-of-Freedom Attitude Control ……………………………44
4.3 Three Degree-of-Freedom Velocity Control ……………………………47
CHAPTER 5 CASE STUDY: LYNX HELICOPTER ……………………………52
5.1 Introduction …………………………………………………………………52
5.2 Robustness Against Wind Gust and Plant Uncertainty …………………54
5.3 Verification of Global Asymptotic Stability ………………………………56
5.4 Verification of Decoupling Control in Hover Mode ………………………56
5.5 Compare between linear and nonlinear H∞ Control ……………………58
5.6 Evaluation of Flying Quality ………………………………………………60
5.6.1 Evaluation Reference Point of Flying Quality …………………60
5.6.2 Levels of flying qualities …………………………………………61
5.6.3 Quickness Criterion ………………………………………………62
CHAPTER 6 CONCLUSION AND SUGGESTIONS ……………………………85
REFERENCES …………………………………………………………………………87
PUBLICATION LIST …………………………………………………………………90
VITA ……………………………………………………………………………………94
REFERENCES

[1]Takahashi, M. D., 1993, “Synthesis and Evaluation of an H2 Control Law for a Hovering Helicopter,” AIAA Journal of Guidance, Control, and Dynamics. 16(3), 579-584.
[2]Morris, J.C., Van Nieuwstadt, M., and Bendotti, P., 1994, “Identification and Control of a Model Helicopter in Hover,” Proceedings of American Control Conference, 2, 1238-1242.
[3]Trentini, M., and Pieper, J.K., 1996, “Model-Following Control of a Helicopter in Hover,” Proceedings of IEEE Conference on Control Applications, 7-12.
[4]Dudgeon, G.J.W., and Gribble, J.J., 1997, “Helicopter Attitude Command Attitude Hold Using Individual Channel Analysis and Design,” AIAA Journal of Guidance, Control, and Dynamics, 20(5), 962-971.
[5]Lin, F., Zhang, W., and Brandt, R.D., 1999, “Robust Hovering Control of a PVTOL Aircraft,” IEEE Transactions on Control Systems Technology, 7(3), 343-351.
[6]Bendotti, P., and Morris, J.C., 1995, “Robust Hover Control for a Model Helicopter,” Proceedings of American Control Conference, 1, 682-687.
[7]Pieper, J.K., 1995, “Application of SLMC: TRC Control of a Helicopter in Hover,” Proceedings of American Control Conference, 2, 1191-1195.
[8]Mahony, R., Hamel, T., and Dzul, A., 1999, “Hover Control via Lyapunov Control for an Autonomous Model Helicopter,” Proceedings of Conference on Decision and Control, 4, 3490-3495.
[9]Mahony, R., and Lozano, R., 2000, “Almost Exact Path Tracking Control for an Autonomous Helicopter in Hover Manoeuvers,” Proceedings of IEEE International Conference on Robotics and Automation, 2, 1245-1250.
[10]Patel, Y., and Smith, P.R., 1998, “Translational Motion of Vertical Takeoff Aircraft Using Nonlinear Dynamic Inversion,” AIAA Journal of Guidance, Control, and Dynamics, 21(1), 179-182.
[11]Shen, T., and Tamura, K., 1995, “Robust H∞ Control of Uncertain Nonlinear Systems via State Feedback,” Trans. Auto. Control, 40(4), 766-769.
[12]Nguang, S.K., 1996, “Robust nonlinear H∞-output feedback control,” IEEE Transaction on Automatic Control, 41(7), 1003-1007.
[13]Aliyu, M.D.S., 1998, “Robust state-feedback H∞ control of nonlinear systems under matching condition,” Proc. 37th IEEE Conference on Decision & Control, Florid, US, 4087-4091.
[14]Hicks, K.L., and Rodriguez, A.A., 1996, “Decoupling Compensation for the Apache Helicopter,” Proceedings of Conference on Decision and Control, 2, 1551-1555.
[15]Yang, C.D., and Liu, W.H., 2002, “Nonlinear H∞ Decoupling Control for Hovering Helicopter,” Proceedings of the American Control Conference, 4353-4358.
[16]Yang, C.D., and Liu, W.H., 2003, “Robust H�V Decoupling Hover Control Of Uncertain Nonlinear Helicopter, ” Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2003-5489.
[17]Chien-Chun Kung, 2008, “Nonlinear H∞ robust control applied to F-16 aircraft with mass uncertainty using control surface inverse algorithm, ” Journal of the Franklin Institute.
[18]Chien-Chun Kung, 2007, “ The Study and Simulation of Nonlinear H∞ Robust Control for Six DOF equations of motion of Rigid Body with Mass Uncertainty,” Journal of Aeronautics, Astronautics and Aviation, series B, Vol. 39., No.2, pp.053-060.
[19]Long-Life Show, 2002, Spacecraft Attitude Control: A Nonlinear Robust Control Approach, Ph. D dissertation, National Cheng Kung University, Taiwan.
[20]Walker, D. J. and Postlethwaite, I., 1996, “Advanced Helicopter Flight Control Using Two-Degree-of-Freedom H�V Optimization,” Journal of Guidance, Control, and Dynamics. Vol. 19, No. 2.
[21]Takahashi, Marc D. “Helicopter Flight-Control Design Using an H2 Method”, AIAA-91-2753-CP.
[22]Huo, Y., and Ioannou, P., 2006, “An Intelligent Flight Control Design with Guaranteed Flying Quality,” 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-1477.
[23]Yang, C.D. and Kung, C.C., 2000, “Nonlinear H∞ Flight Control of General Six Degree-of-Freedom Motions,” AIAA Journal of Guidance, Control, and Dynamics, 23(2), 278-288.
[24]Padfield, G. D., 1996, Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling, AIAA.
[25]Hoblit, F., 1988, Gust Loads on Aircraft: Concepts and Applications, AIAA Education Series.
[26]Tatom, F., Smith, R., Fichtl, G., 1981, “Simulation of Atmospheric Turbulent Gusts and Gust Gradients,” Aerospace Sciences Meeting, AIAA Paper 81-0300.
[27]Yeager, J., 1998, “Implementation and Testing of Turbulence Models for the F18-HARV Simulation,” Lockheed Martin Engineering & Sciences, NASA CR-1998-206937.
[28]Takahashi, M.D., 1994, “H∞ helicopter flight control low design with and without rotor state feedback,” J. Guidance, Control, and Dynamics, 17 (6).
[29]Chien-Chun Kung, 2000, Nonlinear H∞ Flight Control and Applications, Ph. D dissertation, National Cheng Kung University, Taiwan.
[30]Lu, G.P., Zheng, Y.F., and Ho, D.W.C., 2000, “Nonlinear robust H∞ control via dynamic output feedback,” System & Control Letters, 39(3), 193-202.
[31]Liu, R. F., 1999, Helicopter Flight Control and Nonlinear Simulation,M.S. Thesis, National Cheng Kung University, Taiwan.
[32]Chiou, D. W., 1998, Modeling and Simulations of Helicopter Motions, M.S. Thesis, National Cheng Kung University, Taiwan.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊