(3.236.175.108) 您好!臺灣時間:2021/02/28 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:唐紹文
研究生(外文):Shao-wen Tang
論文名稱:低推力聯胺推進系統之設計與不穩定特性分析
論文名稱(外文):The Design and the Instability Study of a low-thrust Hydrazine Propulsion System
指導教授:袁曉峰袁曉峰引用關係
指導教授(外文):Tony Yahn
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:103
中文關鍵詞:衛星姿態控制系統燃燒不穩定下吹式系統聯胺推進系統聯胺單基推進器
外文關鍵詞:Monopropellant Hydrazine ThrusterHydrazine Propulsion SystemBlow-Down Type SystemReaction Control System of SatellitesCombustion Instability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:386
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文配合國家太空中心(NSPO)探空火箭六號「衛星推進控制系統(RCS)酬載」之開發,自行設計、測試並性能分析下吹式(blow-down type)聯胺推進系統。系統主要以高壓氮氣儲瓶、聯胺燃料槽(propellant tank)、止回閥(check valve)、爆通閥、過濾器(filter)、工作閥(service valve)、推進器控制閥(thruster valve)及聯胺推進器(thruster)等元件組成,其中自行設計之聯胺單基推進器採單管徑向式噴注器設計,並使用兩段式觸媒床填充方式(14~18mesh、20~25mesh),應用檔板及彈簧以分隔及保持觸媒充填密度。設計錐形推力噴嘴擴張比為40:1,預期之真空推力約為1lbf。
  經真空靜推力測試顯示,控制聯胺流率為1.97g/sec時,連續操作模式之反應室壓力達202psi,產生1.06lbf真空推力。經計算得比衝值約243sec、特徵速度為4090ft/sec、噴嘴效率(CF)為1.91。在250ms脈衝推力測試顯示此推進系統之平均衝量為0.28±0.01lbf.sec;在500ms脈衝測試之平均衝量為0.51±0.01lbf.sec,皆具穩定之衝量輸出,符合衛星姿態控制需求。
  本研究之系統性能測試顯示反應室及管路壓力震盪,經實驗研究分析顯示:
(1)本研究設計之聯胺推進系統反應室及管路壓力震盪起源於推進器內之劇烈化學反應。
(2)觸媒床擋板彈簧對於反應室及管路壓力震盪有明顯的影響;選用較小彈性係數(K值)之彈簧,對於吸收反應室之壓力震盪具較佳之功效。
(3)管路內配置0.5mm口徑之孔口及空腔具延遲壓力震盪現象(4-5sec)之功能,但乃未能完全抑制壓力震盪。
  本研究未來將針對推進器內之觸媒填充方式及噴注器設計進行探討,期改變反應室內之化學反應模式及壓力震盪特性;並探討配置孔口及空腔所產生之延遲壓力震盪原因,以確立推進系統穩定壓力輸出。
In conjunction with the payload research project of the Sounding Rocket VI mission of NSPO, this thesis designed an 1-lbf propulsion system and tested in atmosphere and in vacuum environment. This blow-down type propulsion system composed of a pressurant’s tank, a propellant tank, check valves, an explosive valve, filters, service valves, and a pair of hydrazine thrusters. The self-designed hydrazine thruster was equipped with a radial-type injector. Two different sizes (14~18mesh、20~25mesh) Shell 405 catalyst were packed in the reaction bed. The catalysts were separated and held by porous plates against a spring to keep the catalyst density constant. Conical nozzle with 40:1 expansion ratio was used to produce a thrust output near 1lbf.
At the static thrust tests in a vacuum chamber, the system produced a chamber pressure of 202psi and a thrust of 1.06lbf in continue hydrazine flow rate of 1.97g/sec. The specific impulse (Isp) and characteristic velocity (C*) were calculated to be 243sec and 4090ft/sec, respectively. In the pulse operations of 250ms and 500ms durations, the average impulses were 0.28±0.01lbf-sec and 0.51±0.01lbf-sec. The performance of the propulsion system was justified to meet the requirements for a reaction control system of satellites.
The results of the test showed pressure oscillation in the reactor and thrust oscillation as well during hot-fire operations. The phenomenon may induce inaccuracy while applying the system to the control of satellites. Further investigation of the this instability (pressure oscillation) showed
(1)the source of the oscillations was from the intensive chemical reaction processes;
(2)a spring with a relatively small spring constant showed effect on vibration absorption that suppressed the pressure oscillation in the reactor;
(3)a restricting orifice of o.5mm ID mounted in the upstream of the thruster valve showed significant effects on the delaying (4-5 seconds) and suppressing the pressure oscillations.
For future works, the research will focus on the effect of catalyst packing, the design of the injector, usages of cavity and orifices on suppression of the pressure oscillation to ensure a stable performance of this hydrazine propulsion system.
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 VII
圖目錄 VIII
符號說明 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機及目的 1
1-3 文獻回顧 2
第二章 反應特性與推進器性能 10
2-1 燃料與觸媒特性 10
2-2 推進器性能 13
第三章 推進系統設計與測試 15
3-1 聯胺推進器之設計 15
3-2 推進系統設計與測試 19
第四章 系統不穩定分析 26
4-1 實驗方法 26
4-2 實驗設備 28
4-3 實驗結果與分析 29
4-4 討論 34
第五章 緒論與未來工作 36
5-1 結論 36
5-2 建議及未來研究方向 37
參考文獻 38
附錄 92
自述 103
1.G.P. Sutton, Rocket Propulsion Elements 6th edition, John Willy & Sons, N.Y. 1992.
2.Olin Corporation, “Hydrazine Propellants”, NO. 731-043, 1991.
3.B.W. Schmitz, D.A. Willams, W.W. Smith, and D. Maybee,”Design and Scaling Criteria for Monopropellant Hydrazine Rocket Engines and Gas Generators Employing Shell 405 Catalyst”, AIAA, NO. 66, p594.
4.An-Shik Yang, “Satellite Hydrazine Propulsion System Design Trades”, Journal of Da-Yeh University, Vol. 10, No. 1, p.p. 41-50, 2001
5.Peter Erichsen, “Directions of Potential Increase in Impulse Performance of Spacecraft Propulsion Systems”, 10th International Workshop on Combustion and Propulsion, p.p. 21-25, Sep 2003
6.K.S. Novak, J.M. Parker, “The Mars Pathfinder Propulsion Line Thermal Design: Testing, Analysis and Pre-Lunch Modifications”, AIAA
7.F.J. Andolz, T.A. Dougherty, A.B. Binder, Lunar Prospector Mission Handbook, Lockheed Martin Missiles & Space CO., April 10, 1998
8.Li, Jun, Sheng, Hong-Zhi, Wei, Xiao-Lin, Tian, Wen-Dong, and Wu, Dong-Yin, “Characteristics of Combustion Instability in a Narrow Combustion Cylinder”, Combustion Science and Technology, Vol. 9, No. 2, 2003, p.p. 161-164.
9.Huzel, Dieter K. and Huang, David H., Design Of Liquid Propellant Rocket Engines 2nd Edition, Rocketdyne Division, North American Rockwell, Inc , 1971.
10.A. Osherov and B. Natan, “Combustion Instability in a small Liquid Rocket Motor”, The Aeronautical Journal , Vol. 103, No. 23, May 1999, p.p. 245-252.
11.張寶炯, 中小推力可貯存推進劑火箭發動機的燃燒不穩定性問題, 上海航天, Vol. 1,1994年第一期, p.p. 11-27。
12. C.F. Sayer, “The Induction Period of Decomposition of Hydrazine on The Shell 405 Catalyst,” Rocket Propulsion Establishment, Technical Note, No. 236, April, 1973.
13. P.J. Marteney, and A.S. kesten, “Catalyst Particle Wetting and Breakup in Hydrazine System,” J.Spacefcraft 13, No.7, p.430,1976.
14. G.L. Cristos, and S. Russel, “Contamination Effects on Catalyst Life”, AFRPL-TR-74-38, Final Report F04611-73-C-0019, July 1974.
15. L. Holcomb, L. Mattson, and R. Oshiro, “Effect of Aniline Impurities on Monopropellant Hydrazine Thruster Performance” , J. Spacecraft, No.3, March, Vol.14, 1977.
16. M.E. Ellion, D.P. Frizell, and R.A. Meese, “Hydrazine Thruster: Present Limitations and Possible Solutions” , AIAA-73-1265, 1973.
17. R.E. Richards, and R. Grabbi, “0.2-lb Monopropellant Hydrazine Thruster Test Results with MIL-Grade and Vikine-Grade Propellant” ,AIAA-76-657, 1976.
18. H.H. Voge, “Catalyst for Monopropellant Decomposition of Hydrazine”, Bulletin 5th Liquid Propulsion Symposium, CPIA Publ. 37A, Vol. III, Addendum pp. 335-347, Dec 1963.
19.C.K. Drenning, and R.C. Stechman, “Determination of Tailoff Impulse and Tailoff Repeatability for Small Rocket Engines”, AIAA Paper 70-674
20. J.A. Quirk, “Hydrazine Engine Cold-Start Evaluation”, 1974 JANNAF Propulsion Meeting, Vol. I, Part 2, pp. 447-472, Dec 1974
21. P.I. Moynihan, “Minimum Impulse Tests of 0.45-N Liquid Hydrazine Catalytic Thrusters”, JPL Quart. Tech. Rev. 2, 107-112, April, 1972
22. Shell Chemical Company, “Shell 405 Catalyst for Catalytic Hydrazine Decomposition Reactors”, Technical Bulletin, SC: 49-84, 1984.
23. Olin Corporation, “Product Data-Ultra Pure Hydrazine”.
24. R.R. Schreib, T.K. Pugmire, and S.G. Chapin, “The Hybrid(Hydrazine)Resistojet”, AIAA, No. 60-496.
25. C.F. Sayer, and G.R. Southern, “The Comparative Testing of the Shell 405, CNESRO-1 and PRE72/1 Hydrazine Decomposition Catalysts”, AIAA, No. 73-1266.
26. W.L. Petty, “Variation in Shell 405 Catalyst Physical Characteristics”, AFPRL-TR-73-56.
27. P.H. Williams, “Modification of Shell 405 Catalyst-Test Catalyst Preparation”, AFRPL-TR-72-7.
28. W.F. Taylor, R.L. Sackheim, and W.T. Webber, “External Catalyst Breakup Phenomena”, AFRPL-TR-76-47, Jun 1976.
29. A.S. Kesten, “Theory and Intuition in Hydrazine Reactor Technology”, AIAA, No.77-845.
30. A.C. Alkidas, S.O. Morris, and M. Summerfield, “Erosive Effects of High-Pressure Combustion Gases on Steel Alloys”, J. Spacecraft, Vol. 13, No.1, p.54, January 1976.
31. A.A. Fote, “Effects of Water Vapor on Thermal Shield Materials”, J. Spacecraft, Vol.14, No.4, p.225, April 1977.
32. W.T. Webber and S.A. Schechter, “Mechanistic Modeling of Shell 405 Internal-Particle Processes”, AIAA, No. 75-1242.
33. J.J. Sangiovanni, and A.S. Kasten, “Motion Picture Studies of the Startup Characteristics of Liquid Hydrazine Catalyic Reactors”, AIAA, No. 71-702.
34. Rocket Research Corporation, “Development of Design and Scaling Criteria for Monopropellant Hydrazine Reactors Employing Shell 405 Spontaneous Catalyst”, NASA Contract NAS 7-372
35. H.C. Hearn, “Flight Performance of a High-Impulse Monopropellant Thruster”, Journal of Spacecraft Rockets, Vol. 18, p.p. 216-221 , 1981
36. 袁曉峰, 游程暉, “聯胺/ shell 405反應特性的研究”, 成功大學航太所碩士論文, 八十二學年度。
37. 袁曉峰, 沈政憲, “氨分解率對聯胺推進器推力產生之實驗觀察”, 成功大學航太所碩士論文, 八十三學年度。
38. 袁曉峰, 劉書帆, “低推力聯胺推進器之設計參數探討”, 成功大學航太所碩士論文, 八十四學年度。
39. 袁曉峰, 林志榮, “推進劑溫度對聯胺推進器反應特性影響之分析”, 成功大學航太所碩士論文, 八十五學年度。
40. 袁曉峰, 莊博雅, “低推力聯胺推進器之設計與測試”, 成功大學航太所碩士論文, 八十五學年度。
41. 袁曉峰, 劉睿凱, “低推力聯胺推進器之噴注器設計與整合測試”, 成功大學航太所碩士論文, 八十七學年度。
42. 袁曉峰, 姚嘉信, “低推力聯胺推進器啟動延遲之研究”, 成功大學航太所碩士論文, 八十八學年度。
43. Rocket Research Corporation, “Final Report for Monopropellant Hydrazine Thruster System”, NASA Contract NAS 5-9137, 1965
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔