( 您好!臺灣時間:2021/02/26 01:12
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chi-Chung Tsai
論文名稱(外文):A Study of Geometrical Factor on the Diffusion Concentration Gradient in a Microchannel Flow
指導教授(外文):Denz Lee
外文關鍵詞:flow resistancediffusionmicrofluidicconcentration gradient
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
Recently, micro total analysis systems (μ-TAS) are beginning to appear in a wide range of applications. The chips fabricated by photolithography techniques bring the advantage of small volumes of fluids, reagents, and
waste. The miniaturized chips are also inexpensive and portable. The microfluidic system has be utilized in cell-base assays, cells separation, pharmacological activity, and etc..
Using two streams in a laminar flow field, we can get a nonlinear concentration distribution. The manipulation of concentration gradient is important in cell response, like neurocyte or cancer cells. Usually, linear concentration gradient profile can be manipulated by the complex microchannel geometry or spatial configuration. Such designs have high flow resistance and they are hard to fabricate.
In this study, we have found stable, extended and continuous concentration distribution in the expansion part of microchannels. We employ eight outlet channels to obtain the specific and fragmented concentration profiles. We have conducted experiments and used both the simulation and flow resistance theory to aid channel design and obtain linear concentration profile.
The study investigated the effect of residence time, the geometry of the expansion channel, and the resistance ratio of the exit channels on the concentration distribution. By exploring the parameters above, we have
gained better understanding of the characteristic of the present diffusion-based flow-field.
摘 要 I
誌 謝 III
目 錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XI
第一章 緒 論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
1-4 文獻回顧 4
第二章 基 礎 理 論 與 微 管 道 設 計 6
2-1 微尺度元件中流體力學特色 6
2-2 擴散分離原理 9
2-2-1 分子擴散理論 9
2-2-2 微流道擴散分離機制 12
2-3 流阻(flow resistance)理論 14
2-4 晶片設計 17
第三章 實 驗 與 模 擬 系 統 設 置 21
3-1 實驗設備 21
3-2 實驗晶片製作 22
3-2-1 母模製作 23
3-2-2 PDMS管道製作 29
3-2-3 管道接合 31
3-3 實驗系統架構 32
3-3-1 擴散實驗平台 32
3-3-2 定性分析系統架構 32
3-4 實驗方法 33
3-5 模擬系統架構 34
3-5-1 統御方程式 35
3-5-2 格點建立 37
3-5-3 模擬條件設定 37
3-5-4 模擬數值分析方法 39
第四章 結 果 與 討 論 41
4-1 確認CFDRC在本研究中之可靠性 41
4-1-1 軟體模擬與實驗之結果 41
4-1-1-1 軟體模擬與文獻比較 41
4-1-1-2 軟體模擬與實驗比較 42
4-1-2 停留時間與濃度分布之影響 44
4-2 擴散係數與濃度分布影響 45
4-2-1 乳膠顆粒(L01) 45
4-2-2 洛達明(Rh6G) 46
4-2 阻力影響流動分布 47
4-3-1 同阻力時改變後端支管長度之模擬結果 47
4-3-2 同阻力時改變後端支管寬度或長度之模擬結果 48
4-3-3 利用阻力設計改變後端支管長度之濃度分布 48
4-4 氣泡堵塞問題改善 50
4-5 管道設計與濃度分布 53
4-5-1 後端支管位置與濃度分布 53
4-5-2 外型改變與濃度分布 53
4-5-3 利用阻力設計改變後端支管寬度之濃度分布 54
第五章 結 論 55
5-1 總結 55
5-2 未來展望 57
參考文獻 58
自 述 100
1.A. Radbruch, “Flow cytometry and cell sorting”, Springer-Verlag, New York, 7-11 (1992).
2.P.T. Sharpe, “Methods of cell separation”, Elsevier, New York, 23-26 (1988).
3.M. Berger, J. Castelino, R. Huang, M. Shah, R. H. Austin, “Design of a microfabricated magnetic cell separator”, Electrophoresis, 22, 3883-3892 (2001).
4.K. Asami, E. Gheorghiu, T. Yonezawa, “Dielectric behavior of budding yeast in cell separation”, Biochimica et Biophysica Acta, 1381, 234-240 (1998).
5.P.R.C. Gascoyne, X.B. Wang, Y. Huang, F.F. Becker, “Dielectrophoretic separation of cancer cells from blood”, IEEE Transactions on Industry Applications, 33, 670-678 (1997).
6.C.S. Effenhauser, A. Manz, H.M. Widmer, “Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights”, Analytical Chemistry, 65, 2637-2642 (1993).
7.A.T. Woolley, K.Q. Lao, A.N. Glazer, R.A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection”, Analytical Chemistry, 70, 684-688 (1998).
8.J.P. Brody, P. Yager, “Diffusion-based extraction in a microfabricated device”, Sensors and Actuators A, 58, 13-18 (1997).
9.S. Levin, J.C. Giddings, “Continuous separation of particles from macromolecules in split-flow thin (SPLITT) Cells”, Journal of Chemical Technology and Biotechnology, 50, 43-56 (1991).
10.J.C. Giddings, “Field-flow fractionation : separation and characterization of macromolecular-colloidal-particulate materials”, Science, 260, 1456-1465 (1993).
11.D.B. Weibel, G.M. Whitesides, “Application of microfluidics in chemical biology”, Current Opinion in Chemical Biology , 10, 584-591 (2006).
12.B.G. Chung, L.A. Flanagan, S.W. Rhee, P.H. Schwartz, A.P. Lee, E.S. Monuki, N.L. Jeon,“Human neural stem cell growth and differentiation in a gradient-generating microfluidic device”, Lab on a Chip, 5, 401-406 (2005).
13.N.L. Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, L.V.D. Water, M. Toner, “Neutrophil chemotaxis in linear and complex gradient of interleukin-8 formed in a microfabricated device”, Nature Biotechnology, 20, 826-830 (2002).
14.X.Y. Jiang, Q.B. Xu, S.K.W. Dertinger, A.D. Stroock, T.M. Fu, G.M. Whitesides, “A general method for patterning gradients of biomolecules on surfaces using microfluidic networks”, Analytical Chemistry, 77, 2338-2347 (2005).
15.D. Irimia, D.A. Geba, M.Toner, “Universal microfluidic gradient generator”, Analytical Chemistry, 78, 3472-3477 (2006).
16.H.K. Wu, B. Huang, R.N. Zare, “Generation of complex, static solution gradients in microfluidic channels”, Journal of the American Chemical Society, 128, 4194-4195 (2006).
17.S.I. Fujii, M. Uematsu, S. Yabuki, M. Abo, E. Yoshimura, K. Sato, “Microbioassay system for an anti-cancer agent test using animal cells on a microfluidic gradient mixer”, Analytical Sciences, 22, 87-90 (2006).
18.H.C. Berg, E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219 (1977).
19.S.T. Wereley, I. Whitacre, R. Bashir, H.B. Li, “DEP particle dynamics and the steady drag assumption”, 2004 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2004, 1, 320-323 (2004).
20.X.F. Peng, G.P. Peterson, B.X. Wang, “Frictional flow characteristics of water flowing through rectangular microchannels”, Experimental Heat Transfer, 7, 249-264 (1994).
21.M. Gad-el-Hak, “The fluid mechanics of microdevices-The freeman scholar lecture”, Journal of Fluids Engineering, 121, 5-34 (1999).
22.P. Wu, W.A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277 (1983).
23.Reist、鄭福田、劉希平, “微粒導論”, 國立編譯館, 2001年.
24.F.M. White, “Viscous fluid flow”, McGraw-Hill, New York (2006).
25.W. Kern, D.A. Poutinen, “Cleaning solution based on hydrogen peroxide for use in silicon semiconductor technology”, Radio Corporation of America Review, 31, 187-206 (1970).
26.G.W. Rubloff, “Defect microchemistry in SiO2/Si structures”, Journal of Vacuum Science & Technology A, 8, 1857-1863 (1990).
27.D.W. Johnson, A. Jeffries, D.W. Minsek, R.J. Hurditch, “Improving the process capability of SU-8”, Journal of Photopolymer Science and Technology, 14, 689-694 (2001).
28.N. LaBianca, J.D. Gelorme, “High aspect ratio resist for thick film application”, Proceedings of The Society of Photo-Optical Instrumentation Engineers-Proceedings of SPIE, 2438, 846-852 (1995).
29.張珮郁,“微流元件內表面張力驅動之流體流動現象的實驗探討”, 成功大學, 2003年.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔