(3.239.159.107) 您好!臺灣時間:2021/03/08 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫嘉鳴
研究生(外文):Jia-Ming Sun
論文名稱:微管道內無動件閥最佳化設計與操作
論文名稱(外文):The Optimal Design and Operation of No-Moving-Part Valves (NMPV) in Microchannels
指導教授:呂宗行
指導教授(外文):Tzong-Shyng Leu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:144
中文關鍵詞:擴張閥無動件閥微型幫浦最佳化
外文關鍵詞:No moving part valve (NMPV)DiffuserOptimal design
相關次數:
  • 被引用被引用:1
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
無動件閥(No-Moving-Part Valve, NMPV)微型幫浦乃利用微管道之幾何設計使流場達到非對稱效果,造成順向壓力梯度(△Pf)與逆向壓力(△Pr)不對等,使得Dip>1而達到能使流體單向流動之單向閥功能。本研究乃以微機電製成加工技術製作出無動件閥所需之SU-8母模,並以PDMS翻膜以製作出無動件閥微管道元件,最後再將所製作之無動件閥微管道元件結合壓電蜂鳴片致動器,完成研究之無動件閥微型幫浦。此外,研究亦透過利用數值模擬分析方法,於雷諾數Re=200, 100, 50, 10, 1, 0.1, 0.01之穩態條件下,計算微管道順向壓降(△Pf)、逆向壓降(△Pr)及Dip 值,以探討噴嘴口效應。模擬結果發現,當雷諾數Re≧10之流場條件下,Dip>1,流體發生單向流動效果而開始具單向閥效果。同時,當擴張口為D=300μm時,具較佳單向閥效應。另分析發現,當閥門寬度D=500μm且流速介於20<ReD<75時,在46°< θ1 <57°且110°< θ2 <116°,因具最佳1.015< Dip <1.14,而為最佳操作區;當閥門擴張口寬度為D=300μm時,流速為10<ReD<30,在40°< θ1 <54°且113°< θ2 <120°範圍內,因具較大Dip區間值1.06< Dip<1.24,而為最佳操作區。
最後,分析乃以一正弦壓力波作為驅動流體之驅動源,探討無動件閥元件非定常流效應。模擬結果發現,當擴張閥設計在中間對稱位置時流阻最小,因而能產生一最大淨流量。當改變驅動壓力大小,發現當在較高雷諾數下,在D=300μm、400μm、500μm皆存在發生最大淨流量之最佳無因次驅動頻率St值(Stoptimal=0.013)。
在實驗方面,乃透過利用都卜勒振動儀分析壓電蜂鳴片,發現當提高驅動電壓時振幅亦相對提高。實驗乃先以固定驅動頻率但改變驅動電壓時,發現壓電蜂鳴片之振幅隨驅動電壓呈一高度線性關係。從無動件閥微型幫浦之實驗中發現,當驅動頻率在f=10Hz時,能產生最大淨流量,証實了最佳化後所設計出的擴張閥,驅動效能確實存在較佳結果。
The no-moving part valve (NMPV) micro pump is the better choice to driving fluid. Because, it easier to fabrication and does not damage biological particles. In this paper, the optimal design of diffuser-type NMPV is explored by maximizing the dipole of a diffuser NMPV Dip, defined as the ratio between reverse pressure drop △Pr and forward flow pressure drop △Pf when the mass flow rate is fixed and Reynolds number is less than 200. Steady simulation yields the following useful findings. First, the optimal design based on the maximum Dip of the NMPV is found to the angle of θ1 and θ2. The diffuser angles ��1 and ��2 changing within the constraints 46°< θ1 <57° and 110°< θ2 <116° are optimized to maximize the dipole Dip when the Reynolds number should be 20<ReD<75 for D=500μm. Furthermore, the diffuser angles ��1 and ��2 change within the constraints 40°< θ1 <54° and 113°< θ2 <120° are optimized to maximize the dipole Dip when the Reynolds number should be 10<ReD<30 for D=300μm. Second, the smaller the diffuser throat width, the larger the Dip is. The operation Reynolds number should be Re>10 for the better performance with Dip >1.
The flow resistance is the lowest when the diffuser valve is designed on the middle of the NMPV. In the result of the unsteady simulation, the optimal design based on St=0.013 is found to drive different pressure energy and produce the maximum net mass flow rate in high Reynolds number. For the best operating point for the St, do not change the position of the diffuser valve and pressure energy. There are some useful findings to test the PZT of the experiment by the MLDV. The PZT be produced the larger in lower frequency of the driving voltages. Additional, the displacement of the same frequency should be linear with voltage. By the experiment of no-moving part valve micro pump, there should be produced the maximum net volume flow rate in f=10Hz. Finally, both of the numerical simulation and experiment have the same trend in the study. It is proved the simulation tool, CFDRC, is powerful for NMPV study.
誌謝 I
摘要 III
Abstract V
目錄 VII
表目錄 XI
圖目錄 XII
符號表 XVII
第一章 緒論 1
1-1 前言 1
1-2 微幫浦之介紹 2
1-3 無動件閥之介紹 5
1-4 研究動機與目的 6
第二章 研究方法及步驟 12
2-1 流場模組 (Flow Module) 13
2-1-1質量守恆 13
2-1-2動量守恆 13
2-2 模擬測試 14
2-2-1 網格密度測試 14
2-2-2 數值計算測試 15
2-3 穩態數值分析 16
2-3-1 擴張閥設計 18
2-3-2 擴張口效應分析 19
2-3-3擴張閥角度效應分析 19
2-3-4流道高度效應分析 21
2-3-5無動件閥微型結構混合分析 22
2-4 非穩態數值分析 23
2-4-1 無動件閥元件之非穩態分析 25
2-4-2 二維無動件閥微幫浦系統分析 27
2-4-3 三維無動件閥微型幫浦系統分析 28
第三章 無動件閥幫浦晶片製作及實驗設備 70
3-1 雷射加工技術 70
3-2 CNC加工技術 71
3-3黃光製程 72
3-3-1 晶片設計 73
3-3-2 晶片清潔(圖3-7-1) 74
3-3-3 塗佈光阻(圖3-7-2) 74
3-3-4 軟烤(圖3-7-3) 75
3-3-5 曝光 (圖3-7-4) 76
3-3-6 黃光製程之總結 77
3-3-7 微流道製作 (圖3-7-7 至圖3-7-8) 77
3-3-8 無動件閥微型幫浦晶片與微管道接合 (圖3-7-9) 78
3-4 實驗設備 79
3-4-1 輸入信號控制系統 79
3-4-2 振動測試系統 80
3-5實驗方法與初步測試 81
第四章 實驗結果與討論 117
4-1 壓電蜂鳴片之振動測試 117
4-1-1 振動模態測試 118
4-1-2 壓電蜂鳴片以空氣為介質之測試 118
4-1-3壓電蜂鳴片以水為介質之測試 119
4-2 無動件閥微型幫浦系統之測試 120
4-2-1 擴張閥角度為θ1=20°及θ2=90°之測試 121
4-2-1 最佳化之擴張角角度為θ1=30°及θ2=120°測試 123
4-3 實驗與數值分析之結果比較 125
第五章 結論 138
參考文獻 141
[1] Ngyen, N. T., Huang, X., Chuan, T. K., "MEMS-Micropimps: A Review,” Transactions of the ASME Journal of Fluids Engineering, Vo1. 124, No. 2, pp. 384-392, June 2002.
[2] Shoji, S., and Esashi, M., "Microflow devices and system," Journal of Micromechanics and Microengineering, Vo1. 4, December, pp. 157-171, 1994.
[3] Jaesung Jang and Seung S. Lee, 2000, “Theoretical and Experimental Study of MHD (magnetohydrodynamic) Micropump,” Sensors and Actuators A, Vol.80, pp. 84-89
[4] R. Linneman, P. Woias, C.-D. Senfft, and J. A. Ditterich, 1998, “A Selfpriming and Bubbletolerant Piezoelectric Silicon Micropump for Liquids and Gases,” IEEE 11th International Workshop on Micro Electro Mechanical Systems (MEMS'98),Heidelberg, Germany,Jan. 25-29, pp. 532-537.
[5] Benard W. L., Kahn H., Heuer A. H. and Huff M. A., 1998, Thin-Film Shape-Memory alloy actuated micropumps, Journal of Microelectromechanical systems, 7, 245-251
[6] [6] Huff, M. A., Gilbert, J and Schmidt, M. A., “Flow Characteristics of a Pressure-Balanced Microvlave,” Solid-Stare Sensors and Actuators, 1993, pp. 98-101.
[7] Lammerink TSJ., Elwenspoek M. and Fluitman JHJ., 1993, Integrated micro-liquid dosing system, Proc. IEEE-MEMS Workshop, 254-259
[8] Lammerink T. S. J., Elwenspoek M. and Fluitman J. H. J., 1993, Integrated micro-liquid dosing system, Proc. IEEE-MEMS Workshop, 254-259.
[9] Yang Y., Zhou Z., Ye X. and Jiang X., 1996, A bimetallic thermally actuated micropump, Microelectromechanical system (MEMS), 59, 351-354
[10] N. Tesla “Valvular conduit” United States Patent US1, pp. 329, pp. 599, Feb. 3, 1920.
[11] E. Stemme and G.Allen, “A Valve-less Diffuser/Nozzle based Fluid Pump,” Sensors and Actuator, Vo1. A39, pp. 159-167, 1993.
[12] T. Gerlach, M. Schuenmann, and H. Wurmus, “A new micropump principle of the reciprocation type using pyramidic micro flow channels as passive valves,” Journal of Micromechanics and Microengineering, Vo1. 5, pp. 199-201, 1995.
[13] T. Gerlach and H. Wurmus, “Working principle and performance of the dynamic micropump,” Sensors and Actuator, Vo1. A50 , pp. 135-140, 1995.
[14] Anders Olsson, Go¨ran Stemme, Erik Stemme , “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps”, Sensors and Actuators , 165–175, 200
[15] Anders Olsson , Go¨ran Stemme, Erik Stemme , “A valve-less planar fluid pump with two pump chambers”, Sensors and Actuators, 549–556, 1995
[16] Nam-Trung Nguyen, Xiaoyang Huang, “Miniature valveless pumps based on printed circuit board technique”, Sensors and Actuators, 104-111, 2001
[17] C.Y.Yang, M. W. Tien, J. C. Lo, U. Lei, “Numerical study of a valve-less micro-pump based on asymmetric obstacles” 中國機械工程學會
[18] Schluter, M. Kampmeyer, U. Tahhan, I. Lilienhof, H.-J. “A modular structured, planar micro pump with no moving part (NMP)valve for fluid handling in microanalysis systems” 2nd Annual International IEEE-EMB Special Topic Conference on 2002
[19] B.P. Wang, Z-X Han, Leon Xu and T. Reinikainen, “A Novel Response Surface Method for Design Optimization of Electronic Packages”, pp. 175-181, presented at 6th Int. Conf. On Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2005, Apr. 18-21, 2205, Berlin, Germany.
[20] B. P. Wang, “Parameter Optimization in Multiquadric Response Surface Approximations”, Structural and Multidisciplinary Optimization, 26, 219-223
[21] Che-Hsin Lin, Gwo-Bin Lee, Bao-Wen Chang and Guan-Liang Chang, “A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist”, Micromech. Microeng. (2002) 590–597
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔