[1] Abe, K., Jang, Y. J. and Leschziner, M. A., “An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models,” Int. J. Heat Fluid Flow, Vol. 24, pp.181–198. (2003)
[2] Chang, K. C., Wang, M. R., Wu, W. J. and Liu Y. C., “Theoretical and experimental study on two-phase structure of planar mixing layer,” AIAA J., Vol. 31, pp. 68–74. (1993)
[3] Gatski, T. B., Speziale, C. G., “On explicit algebraic stress models for complex turbulent flows,” J. Fluid Mech., Vol. 254, pp. 59–78. (1993)
[4] Launder, B. E., Spalding, D. B., “The numerical computation of turbulent flow,” Comput. Methods Appl. Mech. Eng. Vol. 3, pp. 269–289. (1974)
[5] Launder, B.E., Reece, G.J. & Rodi, W., “Progress in the development of a Reynolds stress turbulence closure,” Numer. Heat Transfer, vol. 7, pp. 147–163. (1984)
[6] Patankar, S. V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Washington, D. C., (1984)
[7] Pope, S. B., “A more general effective-viscosity hypothesis,” J. Fluid Mech., Vol. 72, part 2, pp. 331–340. (1975)
[8] Rahman, M. M., “A Low-Reynolds Number Explicit Algebraic Stress Model,” PhD thesis, University of London. (1972)
[9] Rodi, W., “The prediction of free turbulent boundary layers by use of a two equation model of turbulence,” PhD thesis, University of London. (1972)
[10] Rotta, J. C., “Statistische Theorie nichthomogener Turbulenz,” Z. Phys, Vol. 129, pp. 547–72 (1951)
[11] Vandoormaal, J. P., Raithby, G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Comput. Methods Appl. Mech. Eng. Vol. 3, pp. 269-289. (1974)
[12] Wallin, S., “An explicit algebraic Reynolds stress models for incompressible and compressible turbulent flows,” J. Fluid Mech., vol. 403, pp. 89–132. (2000)
[13] 李權庭, “平板混合紊流結構之實驗分析,” 國立成功大學航空太空工程研究所碩士論文 (2004)[14] 許志宏, “含顆粒碰撞機制之氣體-顆粒兩相流場模擬,” 國立成功大學航空太空工程研究所博士論文 (2005)