( 您好!臺灣時間:2021/04/23 20:34
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Liang-Yu Chen
論文名稱(外文):An Inverse Design Problem in Determining the Optimal Shape for Fuel Channels in PEMFC
指導教授(外文):Cheng-Hung Huang
外文關鍵詞:optimal designinverse design problemproton exchange membrane fuel cellshape of gas channelB-splinecell performanceLevenberg-Marquardt Method
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:128
  • 收藏至我的研究室書目清單書目收藏:0
吾人分別針對(i)Case A:在全長60%、(ii)Case B:全長70%及(iii)Case C:全長80%處開始作流道最佳化設計,且操作電壓則分別對電壓V=0.7及電壓V=0.4 兩部份作討論。設計之目標為希望尾端設計流道正上方之電流密度增加為原始的20個百分比與30個百分比。
In this thesis, the CFD (Computational Fluid Dynamics) software that is named CFD-RC is used to set up a three-dimensional numerical model of the straight proton exchange membrane fuel cell (PEMFC), and combine with the Levenberg-Marquardt Method which is one of the technique of Inverse Design Problem for optimizing the shape of gas channel at cathode side in the PEMFC. About the geometry of the redesign gas channel is generated by using B-spline curve method which enab les the shape of the fuel channel to be completely specified using only a small number of control poi nts, the technique of parameter estimation for inverse design problem is thus chosen.
In the studying, I separate three difference example :(i) Case A: In total length 60%, (ii) Case B: Total length 70% and (iii) Case C: 80% of total length to do optimal design, the operation voltage is V=0.7 and V=0.4, respectively. And I hope the program can reach the goal the current densities located on carbon plate near the outlet of channel at cathode are gained 20% or 30%.
According to observe, the channel shape is not regular, it is curve which has frank style turning downward and upward. Because of while doing the optimal design, it is too much to modify at the beginning, and having exceeded the design object. In order to be satisfied the object function, the program is revised by itself, so getting this special shape.
Finally, I discuss and compare flow performance, electric current density, liquid water issue and pressure distribute etc. Results show that by utilizing the redesigned optimal gas channel, the total current of PEMFC can be increased, and at the same time the phenomena for saturated water accumulation in the channel can be greatly reduced.
摘 要 I
誌 謝 III
目 錄 IV
表 目 錄 VI
圖 目 錄 VII
符號說明 XII
第一章 序論 1
1-1 研究背景與動機 1
1-2文獻回顧 3
第二章 理論分析 11
2-1 基本假設 11
2.2統御方程式 13
2-2.1 連續、動量及濃度方程式 13
2-2.2氫離子反應 15
2-2.3電子傳導 17
2-3 邊界條件 19
第三章 數值模擬 25
3-1 直接解問題(THE DIRECT PROBLEM) 25
3-2.1 雲形線設計 27
3-2.2 拉凡格式法之極小化過程(Levenberg-Marguardt Method for Minimization) 28
第四章 問題與討論 35
4-1 不同設計長度 36
4-1.1 流道形狀 36
4-1.2 液態水效應與氧氣濃度 38
4-1.3 電流密度 41
4-1.4 壓力降變化 43
4-2 0.4V之設計流道與0.7V之設計流道比較 44
4-2.1 流道形狀 44
4-2.2 電流密度分佈 44
4-2.3 液態水與氧氣濃度分佈 45
4-3 增加設計電流密度 48
第五章 結論 114
參考文獻 117
[1] Gurau, V., Liu, H., and Kakac, s., 1998, “Two-dimensional Model for Proton Exchange Membrane Fuel Cells, ”AICHE J., Vol.44, NO.11,pp.2410-2422.
[2] Um, S., Wang, C.Y., and Chen, K.S., 2000, “Computational fluid dynamics modeling of proton exchange membrane fuel cells,” J .Elecreochemical.Soc.,
Vol.147, pp.4485-4493
[3] Berning, T., Lu, D.M., and Djilali, N.,2002,“Three-dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,”J.Power Source, Vol.106,pp.284-294.
[4] Berning, T. and Djilai, N.,2003“Three-dimensional Computational Analysis of transport Phenomena in PEM Fuel Cell – a Parametric Study, ”J. Power Source, Vol.124, pp.440-452.
[5] Gralip H. and Harvey G. N.,2006“Main and Interaction Effects of PEM Fuel Cell Design Parameters,”J.Power Source,Vol.156,pp.424-433.
[6] Wood, Ⅲ, DL., Yi, J.s., and Nguyen, T.V., 1998,“Effect of Direct Liquid Water Injection and Interdigitated Flow Field on the Performance of Proton Exchange Membrane Fuel Cells,” Electrochimica Acta, Vol. 43, No.24, pp.3795-3809.
[7] Natarajan, D., and Nguyen, T.V., 2003, “Three dimensional effects of liquid water flooding in the cathode of a PEM fuel cell,”J. Power Source,
[8] Ying, W., Tang, T.H., Lee, W.Y., Ke, J., and Kim, C.S., 2005,“Three-dimensional Modeling and Experimental Investigation for an Air-breathing Polymer Electrolyte Membrane Fuel Cell (PEMFC),”J. Power Sources, Vol.145, pp.563-571.
[9] S. Shimpalee, S. Greenway, and J.W. Van Zee., 2006, “The impact of channel path length on PEMFC flow-field design,”J. Power Source, Vol.160, pp.398-406.
[10] Liu, H.C., Yan, W.M., Soong, C.Y., Chen, F., and Chu, H.S., 2006,“Reactant Gas Transport and Cell Performance of Proton Exchange
Membrane Fuel Cell with Tapered Flow Field Design,”J. Power Sources,Vol.158, pp.78-87.
[11] Wang, C.Y.,and Cheng, P.,1997,“Multiphase flow and heat transfer in porous media,”Advances in Heat Transfer,Vol.30, pp.93-196
[12] Wang, C.Y., Gu, W.B., and Liaw, B.Y., 1999,“Micro-macroscopic coupled modeling of batteries and fuel cells Part 1.model development,” J.Electrochemical Society, in press.
[13] Dullien,F.A.L.,1991,“Porous Media,”Academic Press,New York
[14] Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., 1991,“Polymer Electrolyte Fuel Cell Model,”J.Electrochemical Society,Vol.138,
[15] Nguyen, T.V. and White, R.E., 1993,“A Water and Heat Management Model for Proton-exchange-membrane Fuel Cells,”
J. Electrochemical Society,Vol.140,No.8,pp.2178-2186.
[16] CFD-RC, user manual, ESI-CFD Inc.2005
[17] Cheng, C.H., Lin, H.H. and Lai, G. J., 2007, “Numerical prediction of the effect of catalyst layer Nafion loading on the performance of PEM fuel cells, ”J. Power Sources,Vol.164, pp.730-741.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔