(34.239.176.198) 您好！臺灣時間：2021/04/23 20:34

### 詳目顯示:::

:

• 被引用:0
• 點閱:327
• 評分:
• 下載:128
• 書目收藏:0
 本論文旨在利用計算流體力學軟體CFD-RC建立三維質子交換膜燃料電池數值模型，與反算最佳化程式的結合，針對直通式反應氣體流道，作一最佳流道形狀設計。論文中流道的流形狀參數，主要是透過雲形線（B-Spline）此副程式作修正，並利用反算方法中的拉凡格式法來做最佳化設計，藉由設計不同的電流密度，得到不同的流道形狀。 吾人分別針對（i）Case A：在全長60％、（ii）Case B：全長70％及（iii）Case C：全長80％處開始作流道最佳化設計，且操作電壓則分別對電壓V=0.7及電壓V=0.4 兩部份作討論。設計之目標為希望尾端設計流道正上方之電流密度增加為原始的20個百分比與30個百分比。 根據吾人觀察，設計出來的流道，並非一個規則的形狀，而是呈現一個往下縮後又往上長的曲線。因為在作最佳化設計時，一開始修正過大，超過了設計目標，程式為了要滿足收斂條件而自我修正，因此有此一形狀產生。 最後探討各個流道的性能比較，如電流密度、液態水問題及壓力分佈等。結果發現，經過設計後的流道，其電流密度確實有增加，液態水的堆積問題也有減少，的確有提升其性能。
 In this thesis, the CFD (Computational Fluid Dynamics) software that is named CFD-RC is used to set up a three-dimensional numerical model of the straight proton exchange membrane fuel cell (PEMFC), and combine with the Levenberg-Marquardt Method which is one of the technique of Inverse Design Problem for optimizing the shape of gas channel at cathode side in the PEMFC. About the geometry of the redesign gas channel is generated by using B-spline curve method which enab les the shape of the fuel channel to be completely specified using only a small number of control poi nts, the technique of parameter estimation for inverse design problem is thus chosen. In the studying, I separate three difference example :(i) Case A: In total length 60%, (ii) Case B: Total length 70% and (iii) Case C: 80% of total length to do optimal design, the operation voltage is V=0.7 and V=0.4, respectively. And I hope the program can reach the goal the current densities located on carbon plate near the outlet of channel at cathode are gained 20% or 30%. According to observe, the channel shape is not regular, it is curve which has frank style turning downward and upward. Because of while doing the optimal design, it is too much to modify at the beginning, and having exceeded the design object. In order to be satisfied the object function, the program is revised by itself, so getting this special shape. Finally, I discuss and compare flow performance, electric current density, liquid water issue and pressure distribute etc. Results show that by utilizing the redesigned optimal gas channel, the total current of PEMFC can be increased, and at the same time the phenomena for saturated water accumulation in the channel can be greatly reduced.
 摘 要 IABSTRACT II誌 謝 III目 錄 IV表 目 錄 VI圖 目 錄 VII符號說明 XII第一章 序論 11-1 研究背景與動機 11-2文獻回顧 3第二章 理論分析 112-1 基本假設 112.2統御方程式 132-2.1 連續、動量及濃度方程式 132-2.2氫離子反應 152-2.3電子傳導 172-3 邊界條件 19第三章 數值模擬 253-1 直接解問題（THE DIRECT PROBLEM） 253-2 最佳化設計問題（THE OPTIMAL DESIGN PROBLEM） 273-2.1 雲形線設計 273-2.2 拉凡格式法之極小化過程（Levenberg-Marguardt Method for Minimization） 28第四章 問題與討論 354-1 不同設計長度 364-1.1 流道形狀 364-1.2 液態水效應與氧氣濃度 384-1.3 電流密度 414-1.4 壓力降變化 434-2 0.4V之設計流道與0.7V之設計流道比較 444-2.1 流道形狀 444-2.2 電流密度分佈 444-2.3 液態水與氧氣濃度分佈 454-3 增加設計電流密度 48第五章 結論 114參考文獻 117
 [1] Gurau, V., Liu, H., and Kakac, s., 1998, “Two-dimensional Model for Proton Exchange Membrane Fuel Cells, ”AICHE J., Vol.44, NO.11,pp.2410-2422.[2] Um, S., Wang, C.Y., and Chen, K.S., 2000, “Computational fluid dynamics modeling of proton exchange membrane fuel cells,” J .Elecreochemical.Soc.,Vol.147, pp.4485-4493[3] Berning, T., Lu, D.M., and Djilali, N.,2002,“Three-dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,”J.Power Source, Vol.106,pp.284-294.[4] Berning, T. and Djilai, N.,2003“Three-dimensional Computational Analysis of transport Phenomena in PEM Fuel Cell – a Parametric Study, ”J. Power Source, Vol.124, pp.440-452.[5] Gralip H. and Harvey G. N.,2006“Main and Interaction Effects of PEM Fuel Cell Design Parameters,”J.Power Source,Vol.156,pp.424-433.[6] Wood, Ⅲ, DL., Yi, J.s., and Nguyen, T.V., 1998,“Effect of Direct Liquid Water Injection and Interdigitated Flow Field on the Performance of Proton Exchange Membrane Fuel Cells,” Electrochimica Acta, Vol. 43, No.24, pp.3795-3809.[7] Natarajan, D., and Nguyen, T.V., 2003, “Three dimensional effects of liquid water flooding in the cathode of a PEM fuel cell,”J. Power Source,Vol.115,pp.66-80[8] Ying, W., Tang, T.H., Lee, W.Y., Ke, J., and Kim, C.S., 2005,“Three-dimensional Modeling and Experimental Investigation for an Air-breathing Polymer Electrolyte Membrane Fuel Cell (PEMFC),”J. Power Sources, Vol.145, pp.563-571.[9] S. Shimpalee, S. Greenway, and J.W. Van Zee., 2006, “The impact of channel path length on PEMFC flow-field design,”J. Power Source, Vol.160, pp.398-406.[10] Liu, H.C., Yan, W.M., Soong, C.Y., Chen, F., and Chu, H.S., 2006,“Reactant Gas Transport and Cell Performance of Proton ExchangeMembrane Fuel Cell with Tapered Flow Field Design,”J. Power Sources,Vol.158, pp.78-87.[11] Wang, C.Y.,and Cheng, P.,1997,“Multiphase flow and heat transfer in porous media,”Advances in Heat Transfer,Vol.30, pp.93-196[12] Wang, C.Y., Gu, W.B., and Liaw, B.Y., 1999,“Micro-macroscopic coupled modeling of batteries and fuel cells Part １.model development,” J.Electrochemical Society, in press.[13] Dullien,F.A.L.,1991,“Porous Media,”Academic Press,New York[14] Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., 1991,“Polymer Electrolyte Fuel Cell Model,”J.Electrochemical Society,Vol.138,No.8,pp.2334-2342.[15] Nguyen, T.V. and White, R.E., 1993,“A Water and Heat Management Model for Proton-exchange-membrane Fuel Cells,”J. Electrochemical Society,Vol.140,No.8,pp.2178-2186.[16] CFD-RC, user manual, ESI-CFD Inc.2005[17] Cheng, C.H., Lin, H.H. and Lai, G. J., 2007, “Numerical prediction of the effect of catalyst layer Nafion loading on the performance of PEM fuel cells, ”J. Power Sources,Vol.164, pp.730-741.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 流道幾何及尺寸效應對質子交換膜燃料電池性能之影響 2 反算設計問題於散熱鰭片之三角翼渦流產生器最佳形狀與擺放位置之研究 3 離心式風扇蝸殼流道最佳化之設計 4 質子交換膜燃料電池中流道幾何形狀對其性能影響之數值探討 5 反算法於蛇形質子交換膜燃料電池流道最佳化設計-理論與實驗之研究 6 孔隙度與濕度對質子交換膜燃料電池性能影響之研究 7 具出口收縮之新型流道對質子交換膜燃料電池性能之影響 8 流道出口收縮對PEM燃料電池內部氣體傳輸及性能之影響 9 操作參數對交叉型流道質子交換膜燃料電池性能之影響 10 結合泛熱流軟體之反算法於工程上之應用

 無相關期刊

 1 流道幾何及尺寸效應對質子交換膜燃料電池性能之影響 2 反算法於蛇形質子交換膜燃料電池流道最佳化設計-理論與實驗之研究 3 質子交換膜燃料電池流道之創新設計及分析 4 質子交換膜燃料電池流道設計及最佳性能之研究 5 螺栓鎖緊順序對微型質子交換膜燃料電池流道板變形之影響 6 流道數對具蛇型流場之質子交換膜燃料電池性能影響 7 具直通式流道質子交換膜燃料電池之擋板最佳化研究 8 質子交換膜燃料電池金屬雙極板功能改善研究 9 質子交換膜燃料電池單電池流道數值模擬 10 質子交換膜燃料電池全電池數值模擬及參數分析 11 實驗方法探討質子交換膜燃料電池在不同設計條件及製作方式下對性能影響之研究 12 質子交換膜燃料電池波浪-蜿蜒型流場之研究 13 質子交換膜燃料電池波浪形流道性能之研究 14 質子交換膜燃料電池三維流場之數值分析 15 質子交換膜燃料電池的最佳化參數估測

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室