跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴曉菁
研究生(外文):Siao-Jing Lai
論文名稱:EB病毒蛋白質LMP1調控與發炎相關的細胞激素
論文名稱(外文):Regulation of inflammatory cytokines by Epstein-Barr virus latent membrane protein 1 (LMP1)
指導教授:劉校生張堯
指導教授(外文):Hsiao-Sheng LiuYao Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:47
中文關鍵詞:EB病毒鼻咽癌
外文關鍵詞:LMP1EBV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
慢性發炎反應被認為會透過發炎性細胞激素來促進腫瘤細胞的增生、存活與轉移。於EB病毒相關的鼻咽癌中,也發現到了類似發炎反應的現象以及發炎性細胞激素的產生,但EB病毒如何促成此現象仍未完全明瞭。EB病毒的潛伏期膜蛋白-1 (latent membrane protein 1, LMP1) 已被認為是一致癌蛋白,它會活化多種細胞訊息路徑,進而調控許多細胞基因的表現,因此我們希望知道LMP1是否能調控鼻咽癌細胞表現發炎相關的細胞激素。首先,以蛋白質微陣列做初步的檢驗,結果顯示LMP1能促進鼻咽癌細胞株分泌八種細胞激素。其中MIP-1 alpha、MIP-1 beta與GM-CSF為三個新發現會受到LMP1調控的細胞激素,故被選為深入研究的對象。我們發現外源性的LMP1可以誘發鼻咽癌細胞和何杰金氏淋巴癌細胞產生MIP-1 alpha、MIP-1 beta與GM-CSF,同時證明在EB病毒感染的鼻咽癌細胞中,內生性的LMP1也會促進這三種細胞激素的表現。分析LMP1在鼻咽癌細胞株中所能活化的訊息傳遞路徑,發現canonical nuclear factor-kappa B (NF-kappa B)、non-canonical NF-kappa B以及c-Jun N-terminal kinase (JNK) 訊息路徑能顯著且一致的被活化。LMP1位於細胞質內部的羧基端有兩段C-terminal activating regions (CTARs)-CTAR1與CTAR2-負責活化細胞的訊息傳遞,我們也觀察到LMP1的CTAR1對活化non-canonical NF-kappa B是重要的,而CTAR2對於活化canonical NF-kappa B和JNK路徑是重要的。CTAR1或CTAR2缺失的LMP1突變蛋白會嚴重喪失其促進分泌MIP-1 alpha、MIP-1 beta與GM-CSF的能力。使用NF-kappa B與JNK訊息路徑抑制劑的結果,顯示活化NF-kappa B與JNK訊息路徑對於LMP1誘發這三種細胞激素是必需的。根據之前的報導指出,MIP-1 alpha和MIP-1 beta能夠吸引多種免疫細胞,包括大量浸潤在鼻咽癌中的T淋巴細胞。另外MIP-1 beta與GM-CSF在近期被發現似乎具有免疫調節的功能。因此,我們的研究結果暗示LMP1可能經由促進這些發炎性的細胞激素來控制鼻咽癌組織中的局部免疫反應。
Chronic inflammation can promote tumor cell proliferation, survival, and metastasis through inflammatory cytokines. Inflammation-like microenvironment and production of inflammatory cytokines have also been observed in Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), but the contribution of EBV infection to this phenomenon is not fully understood. EBV latent membrane protein 1 (LMP1) has been considered an oncoprotein and can regulate many cellular genes through triggering multiple cell signaling pathways, so we wondered whether LMP1 can regulate expression of inflammatory cytokines in NPC cells. First, we utilized a protein array to examine the cytokine expression profiles, and eight cytokines were found to be upregulated by LMP1. Among these cytokines, MIP-1 alpha, MIP-1 beta, and GM-CSF were novel target genes of LMP1, so they were chosen for further study. We found that exogenous LMP1 induced production of MIP-1 alpha, MIP-1 beta, and GM-CSF in NPC and Hodgkin’s lymphoma cells, and also demonstrated that endogenous LMP1 enhanced expression of the three cytokines in EBV-infected NPC cells. Analyzing the signaling pathways activated by LMP1 in NPC cells, we found that the canonical nuclear factor-kappa B (NF-kappa B), non-canonical NF-kappa B and c-Jun N-terminal kinase (JNK) signaling pathways can be activated significantly and consistently. Within the intracellular carboxyl terminus of LMP1, two C-terminal activating regions (CTARs), CTAR1 and CTAR2, are responsible for activation of signal transduction. We also observed that CTAR1 was important for non-canonical NF-kappa B pathway, and CTAR2 was important for canonical NF-kappa�羠 and JNK pathways. LMP1 mutants with deletion at CTAR1 or CTAR2 significantly lost their ability to induce MIP-1 alpha, MIP-1 beta, and GM-CSF. Using inhibitors of NF-kappa B or JNK signaling pathways, we found that activation of NF-kappa B and JNK pathways were required for LMP1-induced production of the three cytokines. It has been reported that MIP-1 alpha and MIP-1 beta can recruit various immune cells, including T lymphocytes, which are dominant in the infiltrates in NPC. MIP-1 beta and GM-CSF may also act as immuregulatory factors in some circumstances. Therefore, our data suggest that LMP1 may modulate local immune responses in NPC tissues through upregulation of the inflammatory cytokines.
中文摘要------------------------------------------------- i
Abstract ---------------------------------------------- ii
目錄 -------------------------------------------------- iii
圖目錄--------------------------------------------------- v
序論----------------------------------------------------- 1
一、發炎反應與癌症--------------------------------------- 1
二、鼻咽癌----------------------------------------------- 2
三、EB病毒----------------------------------------------- 4
四、EB病毒潛伏期膜蛋白 LMP1------------------------------ 6
五、研究動機--------------------------------------------- 9
材料與方法---------------------------------------------- 10
質體DNA(plasmid DNA)與小干擾RNA(small interfering RNA, siRNA)-------10
質體轉型(transformation)---------------------------------10
製備質體DNA ---------------------------------------------10
細胞株(cell lines)以及細胞培養(cell culture) ------------11
細胞轉染(transfection) ---------------------------------12
蛋白質與細胞培養上清液之收取 ----------------------------12
蛋白質電泳與西方點墨法(SDS PAGE and Western blotting)--- 13
發炎相關激素蛋白質微陣列(Inflammatory cytokine arrya)--- 13
酵素免疫分析(Enzyme-linked immunosorbent assay, ELISA)---14
抗體---------------------------------------------------- 14
溶液---------------------------------------------------- 15
結果 ----------------------------------------------------16
一、LMP1誘發鼻咽癌細胞株分泌發炎相關的細胞激素---------- 16
二、LMP1促進鼻咽癌及何杰金氏淋巴癌細胞株分泌MIP-1α、MIP-1β與GM-CSF------------------------------------------------ 16
三、內生性的LMP1在感染EB病毒的細胞中與MIP-1α、MIP-1β及GM-CSF之分泌呈正相關 -------------------------------------- 17
四、內生性LMP1在EB病毒感染的細胞中促進與MIP-1α、MIP-1β及GM-CSF之分泌------------------------------------------------18
五、LMP1會活化鼻咽癌細胞中的NF-κB以及JNK訊息傳遞路徑---- 18
六、LMP1的CTAR1與CTAR2區域分別中介活化NF-κB或JNK訊息傳遞路
徑------------------------------------------------------ 19
七、LMP1的CTAR1和CTAR2區域對於促進分泌MIP-1α、MIP-1β及GM-CSF是重要的 ---------------------------------------------20
八、LMP1促進MIP-1α、MIP-1β及GM-CSF之分泌需要NF-κB與JNK訊息
路徑的活化---------------------------------------------- 21
討論---------------------------------------------------- 23
參考文獻------------------------------------------------ 30
Agathanggelou, A., Niedobitek, G., Chen, R., Nicholls, J., Yin, W., and Young, L.S. (1995). Expression of immune regulatory molecules in Epstein-Barr virus-associated nasopharyngeal carcinomas with prominent lymphoid stroma. Evidence for a functional interaction between epithelial tumor cells and infiltrating lymphoid cells. Am J Pathol 147, 1152-1160.
Aggarwal, B.B., Shishodia, S., Sandur, S.K., Pandey, M.K., and Sethi, G. (2006). Inflammation and cancer: how hot is the link? Biochem Pharmacol 72, 1605-1621.
Aldinucci, D., Lorenzon, D., Cattaruzza, L., Pinto, A., Gloghini, A., Carbone, A., and Colombatti, A. (2008). Expression of CCR5 receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer 122, 769-776.
Amon, W., and Farrell, P.J. (2005). Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15, 149-156.
Atkinson, P.G., Coope, H.J., Rowe, M., and Ley, S.C. (2003). Latent membrane protein 1 of Epstein-Barr virus stimulates processing of NF-kB2 p100 to p52. J Biol Chem 278, 51134-51142.
Britanova, L.V., Makeev, V.J., and Kuprash, D.V. (2008). In vitro selection of optimal RelB/p52 DNA-binding motifs. Biochem Biophys Res Commun 365, 583-588.
Brooks, L., Yao, Q.Y., Rickinson, A.B., and Young, L.S. (1992). Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol 66, 2689-2697.
Buettner, M., Meyer, B., Schreck, S., and Niedobitek, G. (2007). Expression of RANTES and MCP-1 in epithelial cells is regulated via LMP1 and CD40. Int J Cancer 121, 2703-2710.
Chan, A.T., Teo, P.M., and Johnson, P.J. (2002). Nasopharyngeal carcinoma. Ann Oncol 13, 1007-1015.
Chang, E.T., and Adami, H.O. (2006). The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 15, 1765-1777.
Chang, Y., Lee, H.H., Chang, S.S., Hsu, T.Y., Wang, P.W., Chang, Y.S., Takada, K., and Tsai, C.H. (2004). Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 78, 13028-13036.
Cloutier, A., Ear, T., Blais-Charron, E., Dubois, C.M., and McDonald, P.P. (2007). Differential involvement of NF-kB and MAP kinase pathways in the generation of inflammatory cytokines by human neutrophils. J Leukoc Biol 81, 567-577.
Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-867.
Eliopoulos, A.G., Gallagher, N.J., Blake, S.M., Dawson, C.W., and Young, L.S. (1999). Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 274, 16085-16096.
Fernandez, N., Renedo, M., Garcia-Rodriguez, C., and Sanchez Crespo, M. (2002). Activation of monocytic cells through Fc gamma receptors induces the expression of macrophage-inflammatory protein (MIP)-1a, MIP-1b, and RANTES. J Immunol 169, 3321-3328.
Gasson, J.C. (1991). Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77, 1131-1145.
Grove, M., and Plumb, M. (1993). C/EBP, NF-kB, and c-Ets family members and transcriptional regulation of the cell-specific and inducible macrophage inflammatory protein 1a immediate-early gene. Mol Cell Biol 13, 5276-5289.
Grund, E.M., Kagan, D., Tran, C.A., Zeitvogel, A., Starzinski-Powitz, A., Nataraja, S., and Palmer, S.S. (2008). Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kB in human endometriotic epithelial cells. Mol Pharmacol 73, 1394-1404.
Hamilton, J.A., and Anderson, G.P. (2004). GM-CSF Biology. Growth Factors 22, 225-231.
Herait, P., Ganem, G., Lipinski, M., Carlu, C., Micheau, C., Schwaab, G., De-The, G., and Tursz, T. (1987). Lymphocyte subsets in tumour of patients with undifferentiated nasopharyngeal carcinoma: presence of lymphocytes with the phenotype of activated T cells. Br J Cancer 55, 135-139.
Huang, Y.T., Sheen, T.S., Chen, C.L., Lu, J., Chang, Y., Chen, J.Y., and Tsai, C.H. (1999). Profile of cytokine expression in nasopharyngeal carcinomas: a distinct expression of interleukin 1 in tumor and CD4+ T cells. Cancer Res 59, 1599-1605.
Jaramillo, M., and Olivier, M. (2002). Hydrogen peroxide induces murine macrophage chemokine gene transcription via extracellular signal-regulated kinase- and cyclic adenosine 5'-monophosphate (cAMP)-dependent pathways: involvement of NF-kB, activator protein 1, and cAMP response element binding protein. J Immunol 169, 7026-7038.
Joosten, S.A., van Meijgaarden, K.E., Savage, N.D., de Boer, T., Triebel, F., van der Wal, A., de Heer, E., Klein, M.R., Geluk, A., and Ottenhoff, T.H. (2007). Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A 104, 8029-8034.
Kaykas, A., Worringer, K., and Sugden, B. (2002). LMP-1's transmembrane domains encode multiple functions required for LMP-1's efficient signaling. J Virol 76, 11551-11560.
Kieff. D, R.A. (2007). Epstein-Barr virus and its replication. In Field's virology, P.M.H. David M. Knipe, ed. (Philadelphia: Wolters kluer, Lippincott Williams & Wilkins).
Kondo, S., Seo, S.Y., Yoshizaki, T., Wakisaka, N., Furukawa, M., Joab, I., Jang, K.L., and Pagano, J.S. (2006). EBV latent membrane protein 1 up-regulates hypoxia- inducible factor 1a through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells. Cancer Res 66, 9870-9877.
Lam, N., and Sugden, B. (2003). CD40 and its viral mimic, LMP1: similar means to different ends. Cell Signal 15, 9-16.
Lambert, S.L., and Martinez, O.M. (2007). Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol 179, 8225-8234.
Lau, K.M., Cheng, S.H., Lo, K.W., Lee, S.A., Woo, J.K., van Hasselt, C.A., Lee, S.P., Rickinson, A.B., and Ng, M.H. (2007). Increase in circulating Foxp3+CD4+CD25 (high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer 96, 617-622.
Lentzsch, S., Gries, M., Janz, M., Bargou, R., Dorken, B., and Mapara, M.Y. (2003). Macrophage inflammatory protein 1-a (MIP-1a ) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 101, 3568-3573.
Li, H.P., and Chang, Y.S. (2003). Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 10, 490-504.
Lombardi, L., Ciana, P., Cappellini, C., Trecca, D., Guerrini, L., Migliazza, A., Maiolo, A.T., and Neri, A. (1995). Structural and functional characterization of the promoter regions of the NFkB2 gene. Nucleic Acids Res 23, 2328-2336.
Luftig, M., Yasui, T., Soni, V., Kang, M.S., Jacobson, N., Cahir-McFarland, E., Seed, B., and Kieff, E. (2004). Epstein-Barr virus latent infection membrane protein 1 TRAF-binding site induces NIK/IKKa-dependent noncanonical NF-kB activation. Proc Natl Acad Sci U S A 101, 141-146.
Mehl, A.M., Floettmann, J.E., Jones, M., Brennan, P., and Rowe, M. (2001). Characterization of intercellular adhesion molecule-1 regulation by Epstein-Barr virus-encoded latent membrane protein-1 identifies pathways that cooperate with nuclear factor kB to activate transcription. J Biol Chem 276, 984-992.
Menten, P., Wuyts, A., and Van Damme, J. (2002). Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13, 455-481.
Nakayama, T., Hieshima, K., Nagakubo, D., Sato, E., Nakayama, M., Kawa, K., and Yoshie, O. (2004). Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein-Barr virus. J Virol 78, 1665-1674.
Pai, S., O'Sullivan, B., Abdul-Jabbar, I., Peng, J., Connoly, G., Khanna, R., and Thomas, R. (2007). Nasopharyngeal carcinoma-associated Epstein-Barr virus-encoded oncogene latent membrane protein 1 potentiates regulatory T-cell function. Immunol Cell Biol 85, 370-377.
Parmiani, G., Castelli, C., Pilla, L., Santinami, M., Colombo, M.P., and Rivoltini, L. (2007). Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 18, 226-232.
Saito, N., Courtois, G., Chiba, A., Yamamoto, N., Nitta, T., Hironaka, N., Rowe, M., Yamamoto, N., and Yamaoka, S. (2003). Two carboxyl-terminal activation regions of Epstein-Barr virus latent membrane protein 1 activate NF-kB through distinct signaling pathways in fibroblast cell lines. J Biol Chem 278, 46565-46575.
Sample, J., Young, L., Martin, B., Chatman, T., Kieff, E., Rickinson, A., and Kieff, E. (1990). Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol 64, 4084-4092.
Schall, T.J., Bacon, K., Camp, R.D., Kaspari, J.W., and Goeddel, D.V. (1993). Human macrophage inflammatory protein a (MIP-1a) and MIP-1b chemokines attract distinct populations of lymphocytes. J Exp Med 177, 1821-1826.
Shanmugaratnam, K., and Sobin, L.H. (1993). The World Health Organization histological classification of tumours of the upper respiratory tract and ear. A commentary on the second edition. Cancer 71, 2689-2697.
Tang, K.F., Chan, S.H., Loh, K.S., Chong, S.M., Wang, D., Yeoh, K.H., and Hu, H. (1999). Increased production of interferon-gamma by tumour infiltrating T lymphocytes in nasopharyngeal carcinoma: indicative of an activated status. Cancer Lett 140, 93-98.
Tang, K.F., Tan, S.Y., Chan, S.H., Chong, S.M., Loh, K.S., Tan, L.K., and Hu, H. (2001). A distinct expression of CC chemokines by macrophages in nasopharyngeal carcinoma: implication for the intense tumor infiltration by T lymphocytes and macrophages. Hum Pathol 32, 42-49.
Taub, D.D., Conlon, K., Lloyd, A.R., Oppenheim, J.J., and Kelvin, D.J. (1993). Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1a and MIP-1b. Science 260, 355-358.
Terpos, E., Politou, M., Viniou, N., and Rahemtulla, A. (2005). Significance of macrophage inflammatory protein-1a (MIP-1a) in multiple myeloma. Leuk Lymphoma 46, 1699-1707.
Thomas, R.S., Tymms, M.J., McKinlay, L.H., Shannon, M.F., Seth, A., and Kola, I. (1997). ETS1, NFkB and AP1 synergistically transactivate the human GM-CSF promoter. Oncogene 14, 2845-2855.
Tsao, S.W., Tramoutanis, G., Dawson, C.W., Lo, A.K., and Huang, D.P. (2002). The significance of LMP1 expression in nasopharyngeal carcinoma. Semin Cancer Biol 12, 473-487.
Uchihara, J.N., Krensky, A.M., Matsuda, T., Kawakami, H., Okudaira, T., Masuda, M., Ohta, T., Takasu, N., and Mori, N. (2005). Transactivation of the CCL5/RANTES gene by Epstein-Barr virus latent membrane protein 1. Int J Cancer 114, 747-755.
Vockerodt, M., Pinkert, D., Smola-Hess, S., Michels, A., Ransohoff, R.M., Tesch, H., and Kube, D. (2005). The Epstein-Barr virus oncoprotein latent membrane protein 1 induces expression of the chemokine IP-10: importance of mRNA half-life regulation. Int J Cancer 114, 598-605.
Wakisaka, N., Kondo, S., Yoshizaki, T., Murono, S., Furukawa, M., and Pagano, J.S. (2004). Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1a. Mol Cell Biol 24, 5223-5234.
Wakisaka, N., Murono, S., Yoshizaki, T., Furukawa, M., and Pagano, J.S. (2002). Epstein-barr virus latent membrane protein 1 induces and causes release of fibroblast growth factor-2. Cancer Res 62, 6337-6344.
Yang, X., Lu, P., Fujii, C., Nakamoto, Y., Gao, J.L., Kaneko, S., Murphy, P.M., and Mukaida, N. (2006). Essential contribution of a chemokine, CCL3, and its receptor, CCR1, to hepatocellular carcinoma progression. Int J Cancer 118, 1869-1876.
Yao, M., Ohshima, K., Suzumiya, J., Kume, T., Shiroshita, T., and Kikuchi, M. (1997). Interleukin-10 expression and cytotoxic-T-cell response in Epstein-Barr-virus-associated nasopharyngeal carcinoma. Int J Cancer 72, 398-402.
Yoshizaki, T., Horikawa, T., Qing-Chun, R., Wakisaka, N., Takeshita, H., Sheen, T.S., Lee, S.Y., Sato, H., and Furukawa, M. (2001). Induction of interleukin-8 by Epstein-Barr virus latent membrane protein-1 and its correlation to angiogenesis in nasopharyngeal carcinoma. Clin Cancer Res 7, 1946-1951.
Young, L.S., Dawson, C.W., Clark, D., Rupani, H., Busson, P., Tursz, T., Johnson, A., and Rickinson, A.B. (1988). Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69 ( Pt 5), 1051-1065.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊