(3.238.186.43) 您好!臺灣時間:2021/02/28 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曹育祥
研究生(外文):Yu-Hsiang Tsao
論文名稱:受過音樂訓練與否對音樂諧和音程認知之行為與腦電位研究
論文名稱(外文):Musical consonance perception in musicians vs nonmusicians: an event-related potential and behavioral study
指導教授:梁勝富梁勝富引用關係
指導教授(外文):Sheng-Fu Liang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:70
中文關鍵詞:音樂感知諧和音程聽覺事件相關電位聽覺皮質區
外文關鍵詞:auditory cortexconsonanceauditory event-related potentialmusic perception
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
諧和音程是西方音樂調性理論普遍且重要的概念。過去研究藉由行為與ERPs的實驗發現音樂家對於諧和音程的處理是符合音程諧和度,然而此方面針對非音樂家的研究卻認為是受到臨界的頻寬(roughness)的影響,因此本研究希望找出音樂家與非音樂家腦皮質在處理音程諧和度及roughness有何差異。本研究實驗目的為利用行為反應和ERPs比較業餘音樂家與非音樂家聽到諧和音程(完全五度)或不諧和音程的差異。諧和音程或不諧和音程聲音刺激包含會產生roughness的頻率範圍及不會產生roughness的頻率範圍。在行為實驗中,業餘音樂家可明確分辨諧和與不諧和音程,但非音樂家卻無法做到這點,且非音樂家認為沒有roughness的刺激為諧和音程,有roughness的刺激為不諧和音程。在ERPs分析中出現N1、P2及N2的ERPs反應,N1由初級聽覺皮質區產生,業餘音樂家與非音樂家在N1沒有差別。P2是由次級聽覺皮質區產生,業餘音樂家不論在完全五度、增四度和有無roughness刺激引起的P2皆比非音樂家的P2振幅較強,諧和音程比起不諧和音程會使業餘音樂家的P2有較強的振幅,非音樂家聽到具有roughness的刺激比起沒有roughness的刺激會產生較強的P2振幅。 N2是由前扣帶皮質區(ACC)產生,業餘音樂家聽到不諧和音程比起諧和音程會產生較強的N2振幅,而具有roughness的刺激比起沒有roughness刺激會讓非音樂家的N2有較強的振幅。實驗結果指出大腦對於諧和音程和不諧和音程的反應會受到專業訓練的影響,業餘音樂家的次級聽覺皮質區因受到音樂訓練而強化,並可藉由前扣帶皮質區明確分辨諧和音程和不諧和音程。
Consonance of interval is a most significant general idea of western tonal music. Some studies indicated that cortical processing of musical consonance conforms to consonance of interval for amateur musicians. However, consonant and dissonant simple-tone intervals are related to critical bandwidth (roughness) for non-musicians. Therefore, the research wants to find out the cortical processing of musical consonance and what are the differences with consonance of interval and roughness for musicians/non-musicians. The aim of the experiment is obtaining comparison of training-related human that handle listening to consonant (perfect fifth) and dissonant (tritone) intervals (with roughness and without roughness) by behavior response and ERPs. In the behavior experiment, amateur musicians accurately categorized the consonant and dissonant intervals, but not for non-musicians. Non-musicians considered that stimuli without roughness are consonant intervals and stimuli with roughness are dissonant intervals. In the ERPs analysis, N1 sources in localized in the region of the primary auditory cortex. The amplitude of the N1 evoked by consonant or dissonant intervals did not differ between amateur musicians and non-musicians. P2 sources localized in the region of the secondary auditory cortex. P2 evoked by consonant or dissonant intervals and stimuli with or without roughness are enhanced in amateur musicians compared with non-musicians. Amateur musicians had a stronger positive P2 when consonant intervals were presented than when dissonant intervals were presented. Non-musicians had a stronger positive P2 when stimuli with roughness were presented than when stimuli with roughness were presented. N2 source localized in the region of anterior cingulate cortex (ACC). Amateur musicians had a stronger negativity N2 when dissonant intervals were presented than when consonant intervals were presented. Non-musicians had a stronger negativity N2 when stimuli with roughness were presented than when stimuli without roughness were presented. The results point to the influence of expertise, since different ERPs were obtained cortical processing of listening to consonant and dissonant intervals. Amateur musicians had enhanced in secondary auditory cortex compared with non-musicians and categorized the consonant and dissonant intervals by ACC.
摘要 iv
Abstract v
Contents viii
List of Figures x
List of Tables xiii
Chapter 1 Introduction 1
1. 1 Research background 1
1.1.1 Pitch 1
1.1.2 Musical consonance 2
1.1.4 Current researches of musical training 5
1.1.5 The auditory event-related potential (AEP) 6
1.2 Research motivation 6
1.3 Research goal 7
Chapter 2 Study in the roughness and consonance 8
2.1 Definition of psychoacoustic consonance 8
2.2 Definitions of consonance in musical field 11
Chapter 3 Materials and methods 14
3.1 Human Music-Perception Experimental Environment 14
3.2 Subjects 16
3.3 Stimuli 18
3.4 Experimental Design 20
3.5 EEG recordings and data analysis 23
3.6 Source analysis 24
3.7 Statistical analysis 25
Chapter 4 Experimental Results 26
4.1 Behavior experiment: response time and percentages of hit rate 26
4.1.1 Stimuli with and without roughness 26
4.1.2 Consonance (perfect fifth) and dissonance (tritone) 26
4.1.3 Response time 26
4.2 ERPs experiment: the amplitude and latency of N1, P2, and N2 28
4.2.1 Experiment2: stimuli with and without roughness 28
4.2.2 Experiment 2: consonance (perfect fifth) and dissonance (tritone) 34
4.2.3 Experiment 3: consonance (perfect fifth) and dissonance (tritone) 40
4.2.4 Experiment 3: Single-trial Analyses 45
4.2.5 Comparison between experiment3 and experiment2 46
4.3 Source analysis 56
4.3.1 Source localizations 56
Chapter 5 Discussion 61
5.1 Behavior data 61
5.2 Auditory event-related potential and source localizations 62
5.2.1 P2 component 62
5.2.2 N2 component 63
5.2.3 N1 component 64
5.2.4 Parietal positive slow wave (ppSW) and Frontal negative slow wave (fnSW) 64
5.3 The cortical pathway 65
Chapter 6 Conclusion 67
References 68
Amunts, K., Schlaug, G., Jancke, L., Steinmetz, H., Schleicher, A., Dabringhaus A., Zilles, K., “Motor cortex and hand motor skills: structural compliance in the human brain,” Human Brain Mapping, Vol. 5, No. 3, pp. 206-215, 1997.
Atienza, M., Cantero, J. L., and Dominguez-Marin, E., “The time course of neural changes underlying auditory perceptual learning,” Learning & Memory, Vol. 9, No. 3, pp. 138-150, 2002.
Blood, A. J., Zatorre, R. J., Bermudez, P., and Evans, A. C., “Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions,” Nature Neuroscience, Vol. 2, pp. 382-387, 1999.
Bosnyak, D. J., Eaton, R. A., and Roberts, L. E., “Enhancement of multiple components of the auditory evoked potential in nonmusicians by training for pitch discrimination with 40-Hz amplitude modulated tones,” Proceedings of the 13th International Conference on Biomagnetism, Jena, Germany, August, 2002.
Brattico, E., Tervaniemi, M., Valimaki, V., Zuijen, T., and Peretz, I., “Cortical correlates of acquired deafness to dissonance,” Ann. N. Y. Acad. Sci., Vol. 999, pp. 158-160, 2003.
Critchley, and M., Henson, R., “Music and the Brain,” Studies in the Neurology of Music, London: Heinemann, 1977.
Fishman, Y. I., Reser, D. H., Arezzo, J. C., and steinschneider, M., “Complex tone processing in primary auditory cortex of the awake monkey. I. Neural ensemble correlates of roughness,” J. Acoust. Soc. Am., Vol. 108, pp. 247-262, 2000.
Fishman, Y. I., Volkov, I. O., Noh, M. D., Garell, P. C., Bakken, H., Arezzo, J. C., Howard, M. A., and Steinschneider, M., “Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and human,” Journal of Neurophysiology, Vol. 86, pp. 2761-2788, 2001.
Gaab, N., Gaser, C., Zaehle, T., Jancke, L., and Schlaug, G., “Functional anatomy of pitch memory- an FMRI study with sparse temporal sampling” Neuroimage, Vol. 19, pp. 1417-1426, 2003.
Garcia-Larrea L. and Cezanne-Bert, G.., “Positive slow wave and working memory load: a study on the functional correlates of slow wave activity,” Electroencephalogr Clin Neurophysiol, Vol. 97, pp. 260-273, 1998.
Garca-Larrea, L., Lukaszewicz, A. C., and Mauguire, F., “Revisiting the oddball paradigm. Non-target VS neutral stimuli and the evaluation of ERP attentional effects,” Neuropsychologia, Vol. 30, No. 8, pp.723–741, 1992.
Gaser, C. and Schlaug, G., “Brain Structures Differ between Musicians and Non-Musicians,” The Journal of Neuroscience, Vol. 8, pp. 9240-9245, 2003.
Gutschalk, A., Patterson, R. D., Rupp, A., Uppenkamp, S., and Scherg, M., “Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex,” Neuroimage, Vol. 15, No. 1, pp. 207-216, 2002.
Helmholtz, H. L. M., “On the sensations of tone as a physiological basis for the theory of music,” edited by Ellis AJ. New York: Dover, 1954.
Hutchinson, S., Lee, L. H., Gaab, N., and Schlaug, G., “Cerebellar volume of musicians” cerebral cortex, Vol. 13, No. 9, pp. 943-949, 2003.
Itoh, k., Suwazono, S., and Nakada, T., “Cortical processing of musical consonance: an evoked potential study,” Neuroreport, Vol. 14, No. 18, pp. 2303-2306, 2003.
Kameoka, A. and Kuriyagawa, M., “Consonance theory part I: Consonance of dyads,” The Journal of the Acoustical Society of America, Vol. 45, pp. 1451–1459, 1969.
Koelsch, S., Fritz, T., Von Cramon, D. Y., Muller, K., and Friederici, A. D., “Investigating emotion with music: an fMRI study,” Human Brain Mapping, Vol. 27, pp. 239-250, 2006.
Koelsch, S., Schröger, E., and Tervaniemi, M., “Superior attentive and pre-attentive auditory processing in musicians,” Neuroreport, Vol. 10, No. 6, pp. 1309-1313, l999.
Koelsch and Siebel, W. A., “Towards a neural basis of music perception,” Trends Cogn. Sci., Vol. 9, No. 12, pp. 578–584, 2005.
McKinney, M. F., Tramo, M. J., and Delgutte B., “Neural correlates of the dissonance of musical intervals in the inferior colliculus,” Assoc. Res. Otolaryngol. Abstr., Vol. 24, pp. 54-55, 2001.
Moore, B., “An introduction to the psychology of hearing,” San Diego: Academic Press, 1997.
Munte, T. F., Altenmuller, E., and Jancke, L., “The musician’s brain as a model of neuroplasticity” Nature Reviews Neuroscience,Vol. 96, pp. 473-478, 2002.
Naatanen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., and Winkler, I., “’Primitive intelligence’ in the auditory cortex,” Trends in Neurosciences, Vol. 24, pp. 283-288, 2001.
Neukirch, M., Hegerl, U., Kötitz, R., Dorn, H., Gallinat, J., Herrmann, W.M., and Gallinat, U., “Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components.” Neuropsychobiology, Vol. 45, pp. 41-48, 2002.
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., Hoke, M., “In creased auditory cortical representation in musicians,” Nature, Vol. 392, pp.811-814, 1998.
Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., Ross, B., “Timber-specific enhancement of auditory cortical representations in musicians,” Neuroreport, Vol. 12, pp.1-6, 2001.
Penagos, H., Melcher, J. R., and Oxenham, A. J., “A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging,” The Journal of Neuroscience, Vol. 24, No. 30, pp. 6810-6815, 2004.
Peretz, I., Blood A. J., Penhune, V., and Zatorre, R., “Cortical deafness to dissonance,” Brain, Vol. 24, pp. 928-940, 2001.
Patterson, R.D., Uppenkamp, S, Johnsrude, I.S., Griffiths, T.D., “The processing of temporal pitch and melody information in auditory cortex,” Neuron, Vol. 36, pp. 767-776, 2002.
Plomp, R. and Steeneken, H., “Interference between two simple tones,” J. Acoust, pp883-884, 1968.
Plomp, R. and Levelt, W. J., “Tonal consonance and critical bandwidth,” The Journal of the Acoustical Society of America, Vol. 38, No.4, pp. 548-560, 1965.
Pritchard, W. S., Shappell, S. A., and Brandt, M. E., “Psychophysiology of N200/N400: A review and classification scheme,” Advances in Psychophysiology, pp. 43-106, 1991.
Rasch, R. A., and Plomp, R., “The perception of musical tones,” in The Psychology of Music, edited by D. Deutsch (Academic, New York), pp. 1-24, 1982.
Regnault, P., Bigand, E., and Besson, M., “Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: Evidence from auditory Event Related brain Potentials,” Journal of Congitive Neuroscience, Vol. 13, pp. 241-255, 2001.
Ritter, W., Simson, R., Vaughan, H. G., and Friedman, D., “A brain event related to the making of sensory discrimination,” Science, Vol. 203, No. 4387, pp. 1359-1361, 1979.
Scherg, M. and Von Cramon, D., “Two bilateral sources of the late AEP as identified by a spatiotemporal dipole model,” Electroenceph. Clin. Neurophysiol., Vol. 62, pp. 32-44, 1985.
Scherg, M. and Von Cramon, D., “Evoked dipole source potentials of the human auditory cortex,” Electroenceph. clin. Neurophysiol,” Vol.65, pp. 344-360, 1986.
Schellenberg, E. G. and Trainor, L. J., “Sensory consonance and the perceptual similarity of complex-tone harmonic intervals: tests of adult and infant listeners,” The Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3321-3328, 1996.
Schellenberg, E. G. and Trehub, S. E., “Frequency ratios and the perception of tone patterns,” Psychonomic Bulletin and Review, Vol. 1, No. 2, pp. 191-201, 1994.
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., and Rupp, A., “Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians,” Nature Neuroscience, Vol.5, pp. 688-694, 2002.
Shahin, A., Bosnyak, D. J., Trainor, L. J., and Roberts, L. E., “Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians,” The Journal of Neuroscience, Vol. 23, No.13, pp. 5545-5552, 2003.
Shahin, A., Roberts, L. E., Pantev, C., Trainor, L. J., Ross B., “Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds,” Neuroreport, Vol. 16, No. 16, pp. 1781-1785, 2005.
Smith, E. E. and Jonides, J., “Neuroimaging analyses of human working memory,” Proc Natrl Acad sci USA, Vol. 95, pp. 12061-12068, 1998.
Terhardt, E., “Pitch, consonance, and harmony,” The Journal of the Acoustical Society of America, Vol. 55, No.5, pp. 1061-1069, 1974.
Terhaedt, E., “The concept of musical consonance: a link between music and psychoacoustics,” Music Percept, Vol.1, pp. 276-295, 1984.
Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., and Schroger, E., “Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study,” Experimental Brain Research, Vol. 161, No.1, pp. 1-10, 2005.
Tramo, M. J., Cariani, P., and Delgutte, B., “Representation of tonal consonance and dissonance in the temporal firing patterns of auditory nerve fibers,” Soc. Neurosci. Abstr., Vol. 18, pp. 382, 1992.
Tramo, M. J., Cariani, P. A., Deglutte, B., and Braida, L. D., “Neurobiology of harmony perception,“ U.K.: Oxford University Press, 2003.
Tramo, M. J., Shah, G. D., and Braida, L. D., “Functional role of auditory cortex in frequency processing and pitch perception,” Neurophysiol, Vol. 87, No. 1, pp. 122-139, 2002.
Tremblay, K., Kraus, N., McGee, T., Ponton, C., and Otis, B., “Central auditory plasticity: changes in the N1-P2 complex after speech-sound training,” Ear and Hearing, Vol. 22, No. 2, pp. 79-90, 2001.
van Veen V. and Carter Cameron S., “The timing of action-monitoring processes in the anterior cingulate cortex,” Journal of Cognitive Neuroscience, Vol.14, pp. 593-602, 2002.
Warren, J.D., Jennings, A.R., and Griffiths, T.D., “Analysis of the spectral envelope of sounds by the human brain,” Neuroimage, Vol. 24, pp. 1052-1057, 2005.
Zatorre, R.J., Evans, A.C., and Meyer, E., “Neural mechanisms underlying melodic perception and memory for pitch,” The Journal of Neuroscience, Vol.14, pp. 1908-1919, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔