跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳乾元
研究生(外文):Chien-Yuan Chen
論文名稱:啟發式階層式知識結構建置之研究
論文名稱(外文):Heuristic-based Approach for Constructing Hierarchical Knowledge Structure
指導教授:李昇暾李昇暾引用關係
指導教授(外文):Sheng-Tun Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:48
中文關鍵詞:樹狀知識結構本體論概念階層知識擷取概念模型
外文關鍵詞:tree-based hierarchical knowledge structureconcept hierarchyontologyconceptual modelknowledge socialization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
知識經濟的世代,知識管理是每個企業核心競爭力的關鍵。知識可以視為是一群互相關聯的概念,普遍存在文獻或是領域專家的心智中。將知識外顯化是知識管理的首要步驟,但最耗費人力與時間的,莫過於如何將擷取出來的知識,做適當的表達。知識的表達有許多方法,樹狀階層的知識結構是長久以來所慣用的知識表達結構,它可以很直覺地將知識整體地展現出來,並傳達明確的階層觀念。許多相關的研究皆致力於(半)自動化的階層結構建置,本研究提出一個新穎的演算法,以概念之間的相似度為基礎,(半)自動化建構概念間的樹狀階層結構。進一步,我們討論數個根節點的特性用以推薦根節點。概念間樹狀階層結構的產生,亦可應用於語意網,做為建構本體論的第一步。
Being in the times of knowledge economy, knowledge is the core of competence of every enterprise. Knowledge can be regarded as a set of mutual associated concepts which generally exists in corpora or experts’ cognitions. Knowledge socialization is the first step of Knowledge Management (KM) and the most laborious of it is to appropriately express the socialized knowledge. Lots of formats can be used to express knowledge, the most common being the tree-based hierarchical knowledge structure. It can express the knowledge holistically and render explicit hierarchy sense. Many researches propose (semi-)automatic hierarchical knowledge structure constructing approaches. We present a novel methodology to construct tree-hierarchy (semi-)automatically based on similarities between concepts. Further, several characters of the root are discussed for root recommendation. The resulting structure can be the initial step of building ontology.
Chapter 1 Introduction 1
1.1 Motivation and background 1
1.2 Objectives 2
1.3 Assumptions 4
1.4 Research procedure 4
Chapter 2 Literature Review 6
2.1 Lattice-based hierarchical knowledge structure 6
2.2 Tree-based knowledge structure 9
2.3 The characters of the root 14
2.4 Brief summary 15
Chapter 3 Methodology 18
3.1 Corpus knowledge socialization 20
3.1.1 Preprocess 20
3.1.2 Vector Space Model (VSM) 20
3.1.3 Cosine measure 21
3.2 The hierarchy feature 22
3.3 Heuristic Tree-hierarchy Construction Algorithm
(HTCA) 24
3.3.1 Main 24
3.3.2 HTCA 25
3.4 The characters of a root 29
3.5 Evaluation module 31
3.5.1 Root recommendation evaluation 31
3.5.2 Tree-hierarchy structure evaluation 31
Chapter 4 Implementation and Experiments 33
4.1 Implementation 33
4.2 Data collection 33
4.3 Experiments and results of root recommendation 35
4.4 Experiments and results of tree-hierarchy structure 37
4.4.1 Initial results 37
4.4.2 Similarity adjustment 38
4.4.3 Similarity adjustment results 39
Chapter 5 Conclusions and future works 42
References 45
Appendix A. The golden standard of musical instrument 48
Baeza-Yates, R., & Ribeiro-Neto, B. Modern Information Retrieval. ADDISON WESLEY: Edinburgh Gate. 1999.

Berners-Lee, T., Hendler, J., & Lassila, O. The Semantic Web. Scientific American, 279. 2001.

Bhatia, S. K., & Deogun, J. S. Conceptual Clustering in Information Retrieval. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, 28(3), 427-436. 1998.

Bradley, J. H., Paul, R., & Seeman, E. Analyzing the structure of expert knowledge. Information & Management, 43, 77-91. 2006.

Brank, J., Grobelnik, M., & Mladenić, D. A SURVEY OF ONTOLOGY EVALUATION TECHNIQUES. Paper presented at the Proceedings of the 8th International multi-conference Information Society, Ljubljana, Slovenia. 2005.

Byrd, T. A. Expert systems implementation: interviews with knowledge engineers Industrial Management & Data Systems, 95(10), 3-7. 1995.

Caraballo, S. A. Automatic construction of a hypernym-labeled noun hierarchy from text. Paper presented at the Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics (ACL), College Park, USA. 1999.

Carpineto, C., & Romano, G. Exploiting the Potential of Concept Lattices for Information Retrieval with CREDO. Journal of Universal Computing, 10(8), 985-1013. 2004b.

Chazelle, B. A minimum spanning tree algorithm with inverse-Ackermann type complexity. Journal of the ACM, 47(6), 1028-1047. 2000.

Chi, Y.-L. Elicitation synergy of extracting conceptual tags and hierarchies. Expert Systems With Applications, 32, 349-357. 2007.

Chow, C. K., & Liu, C. N. Approximating Discrete Probability Distributions with Dependence Trees. IEEE TRANSACTIONS ON INFORMATION THEORY, IT-14(3), 462-467. 1968.

Cigarr´an, J. M., Pe˜nas, A., Gonzalo, J., & Verdejo, F. Automatic Selection of Noun Phrases as Document Descriptors in an FCA-Based Information Retrieval System. Paper presented at the proceedings of the Third International Conference on Formal Concept Analysis (ICFCA), Lens, France. 2005.

Cimiano, P., Hotho, A., & Staab, S. Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis. Journal of Artificial Intelligence Research, 24, 305-339. 2005.

Crocker, L., & Algina, J. Introduction to classical and modern test theory. Harcourt Brace Jovanovich College Publishers: New York. 1986.

Formica, A., & Missikoff, M. Inheritance Processing and Conflicts in Structural Generalization Hierarchies. ACM Computing Surveys, 36(3), 263-290. 2004.

Ganter, B., & Wille, R. Formal concept analysis: Mathematical foundations. Springer-Verlag: New York. 1999.
Glover, E., Pennock, D. M., Lawrence, S., & Krovetz, R. Inferring Hierarchical Descriptions. Paper presented at the Proceedings of the 20th International Conference on Information and Knowledge Management (CIKM), McLean, Virginia, USA. 2002.

Gu, H., & Zhou, K. Text Classification Based on Domain Ontology. Journal of Communication and Computer, 3(5), 29-32. 2006.

Guha, R. V., & Brickley, D. RDF Vocabulary Description Language 1.0: RDF Schema. 2004, 10 February. Retrieved 18 December, 2007, from http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

Kruskal, J. B. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Paper presented at the Proceedings of the American Mathematical Society. 1956.

Lammari, N., & Metais, E. Building and maintaining ontologies: a set of algorithms. Data & Knowledge Engineering, 48, 155-176. 2004.

Lee, L. Measures of Distributional Similarity. Paper presented at the 37th Annual Meeting of the Association for Computational Linguistics (ACL), College Park, Maryland, USA. 1999.

Li, S.-T., & Tsai, F.-C. Concept-guided query expansion for knowledge management with semi-automatic knowledge capturing. The Journal of Computer Information Systems, 6-39. 2009.

Lopez, M. F., Gomez-Perez, A., & Sierra, J. P. Building a Chemical Ontology Using METHONTOLOGY and the Ontology Design Environment. IEEE Intelligent Systems, 14(1), 37-46. 1999.

Maedche, A., Pekar, V., & Staab, S. Ontology Learning Part One — On Discovering Taxonomic Relations from the Web. Paper presented at the Proceedings of the Web Intelligence conference, New York, USA. 2002.

Miller, E., & Manola, F. RDF Primer. 2004, 10 February. Retrieved 18 December, 2007, from http://www.w3.org/TR/REC-rdf-syntax/

Murphy, G. L., & Lassaline, M. E. Hierarchical Structure in Concepts and the Basic Level of Categorization. In K. Lamberts & D. Shanks (Eds.), KNOWLEDGE CONCEPTS, AND CATEGORIES (pp. 93-131). Psychology Press: N3 2FA. 1997.

Nonaka, I. A Dynamic Theory of Organizational Knowledge Creation. Organization Science, 5(10), 14-37. 1994.

Prim, R. C. Shortest connection networks and some generalization. Bell System Technical Journal, 36, 1389-1401. 1957.

Priss, U. Formal Concept Analysis in Information Science. In B. Cronin (Ed.), Annual Review of Information Science and Technology (ARIST) (Vol. 40, pp. 521-543). Medford, Information Today: New Jersey. 2006.

Rodrı´guez, M. A., & Egenhofer, M. J. Determining Semantic Similarity among Entity Classes from Different Ontologies. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 15(2), 442-456. 2003.

Sanderson, M., & Lawrie, D. BUILDING, TESTING,ANDAPPLYINGCONCEPT HIERARCHIES. In W. B. Croft (Ed.), Advances in Information Retrieval: Recent Research from the Center for Intelligent Information Retrieval (Vol. 7, pp. 235-266): Springer Netherlands. 2000.

Stumme, G. Off to new shores: conceptual knowledge discovery and processing. International Journal Human-Computer Studies, 59, 287-325. 2003.

Tang, J., Li, J., Liang, B., Huang, X., Li, Y., & Wang, K. Using Bayesian decision for ontology mapping. Web Semantics: Science, Services and Agents on the World Wide Web, 4, 243-262. 2006.

Tempich, C., Pinto, H. S., Sure, Y., & Staab, S. An argumentation ontology for distributed, loosely-controlled and evolving engineering processes of ontologies (DILIGENT). Paper presented at the Second European Semantic Web Conference (ESWC). 2005.

Tho, Q. T., Hui, S. C., Fong, & Cao, T. H. Automatic Fuzzy Ontology Generation for Semantic Web. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 18(6), 842-856. 2006.

Venter, F. J. Knowledge Discovery in Databases Using Lattices. Expert Systems With Applications, 13(4), 259-264. 1997.

Wolff, K. E. A First Course in Formal Concept Analysis. In F. Faulbaum (Ed.), SoftStat'93 Advances in Statistical Software 4 (pp. 429-438). Gustav Fischer: Frankfurt. 1994.

Yang, H.-C., & Lee, C.-H. A text mining approach on automatic generation of web directories and hierarchies. Expert Systems With Applications, 27, 645-663. 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top