跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜明婷
研究生(外文):Ming-Ting Tu
論文名稱:鋇鈦比對於鈦酸鋇粉末晶粒大小及結晶相之影響
論文名稱(外文):Effects of Ba/Ti Ratio on Crystallite Size and Crystalline Phase of BaTiO3 Powders
指導教授:黃啟原黃啟原引用關係
指導教授(外文):Chi-Yuen Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:126
中文關鍵詞:鈦酸鋇正方性富鈦富鋇晶粒大小
外文關鍵詞:Ba-excessBaTiO3Ti-excesscrystallite sizetetragonality
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1161
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:0
鈦酸鋇具有良好的介電性質,因而廣泛的使用在多層陶瓷電容器、變電器、熱敏電阻等產品。由於Ba/Ti比的改變對於鈦酸鋇的介電性質、微結構、居禮溫度等,都會造成影響,因此研究Ba/Ti比對於鈦酸鋇的影響變得十分重要。所以,本研究希望透過在不同Ba/Ti比的情況下,以固相法合成鈦酸鋇粉末,以了解不同Ba/Ti比對鈦酸鋇粉末crystallite size及結晶相之影響。
實驗結果顯示,在煆燒溫度1200℃持溫4小時的情況下,非計量比鈦酸鋇的固溶範圍在0.98<Ba/Ti<1.02區間。此外,煆燒後的鈦酸鋇粉末,在固溶範圍內,隨 Ba/Ti比下降至Ba/Ti=1.01~1.00區間,由於鈦空缺含量的減少,導致crystallite size巨幅減小。藉由Raman及XRD分析結果得知,當Ba/Ti比下降Ba/Ti=1.00~0.98區間,由於鈦酸鋇粉末的crystallite size減小,導致crystallite內部應力增加與表面能提高,因而造成tetragonal phase有相轉換為 cubic phase的趨勢,使得 tetragonality下降。
Recently, ferroelectric ceramics such as BaTiO3 have become some of the most promising materials for electronics. Because of their superior dielectric properties, BaTiO3-based ceramics have been studied for their applications in multilayer capacitors, transducers, PTCR thermistors, etc. The reliability, microstructure, and dielectric properties were influenced through varying Ba/Ti ratio of BaTiO3. Most of previous investigations on Ba/Ti ratio of BaTiO3 focused on the dopant. The elements doping may cause the complicated situation on studies of Ba/Ti ratio. For this aim, high purity BaCO3 and TiO2 were used to synthesize non-stoichiometric BaTiO3 via solid state reaction. In this study, the effects of Ba/Ti ratio on crystallite size and crystalline phase of BaTiO3 powders were studied.
This study shows that the solubility limit of barium and titanium ions in non-stoichiometric BaTiO3 was in the range of 0.98<Ba/Ti<1.02 at condition of 1200oC/4 h calcination. Within the solubility limit, the crystallite size of as-calcined BaTiO3 powders decreased drastically in the vicinity of Ba/Ti=1.01~1.00. When Ba/Ti ratio decreased to the vicinity of 1.00~0.98, BaTiO3 powders showed the tendency to transform from tetragonal to cubic phase, which makes the tetragonality decrease .
摘要 I
Abstract II
誌謝 III
總目錄 V
表目錄 VII
圖目錄 VIII
第一章�緒論 1
1.1 前言 1
1.2 研究目的 1
第二章�理論基礎與文獻回顧 3
2.1 鈦酸鋇之晶體結構及其性質 3
2.2 鈦酸鋇的表面效應 7
2.3 鈦酸鋇的晶粒大小效應 13
2.4 Ba/Ti比的改變對於鈦酸鋇的影響 13
2.5 拉曼光譜分析 26
2.5.1 拉曼光譜原理 26
2.5.2 拉曼光譜在鈦酸鋇上的應用 26
第三章�實驗方法與步驟 43
3.1 實驗概念 43
3.2 起始原料 43
3.3 實驗步驟 43
3.3.1 粉末製備 43
3.3.2 粉末之 DTA/TGA分析 45
3.4 特性分析 45
3.4.1 X光螢光分析 45
3.4.2 電子微探儀 47
3.4.3 相鑑定 51
3.4.4 晶格常數分析 51
3.4.5 晶體結構分析 54
3.4.6 掃描式電子顯微鏡 57
3.4.7 粒徑大小與分佈計算 57
3.4.8 穿透式電子顯微鏡 58
3.4.9 拉曼光譜分析 58
3.4.10 比表面積測定 58
3.4.11 化學分析影像能譜儀 60
第四章 結果與討論 61
4.1 起始混合粉末之 DTA/TGA分析 61
4.2 Ba/Ti比定量分析 61
4.2.1 X光螢光分析 61
4.2.2 電子微探儀分析 65
4.3 非計量比鈦酸鋇之固溶範圍 67
4.3.1 XRD相鑑定分析 67
4.3.2 拉曼光譜相鑑定分析 67
4.3.3 比表面積分析 71
4.3.4 綜合討論 71
4.4 Ba/Ti比對於 crystallite size的影響 71
4.5結晶相分析 81
4.5.1 Core-shell結構 81
4.5.1.1 Rietveld Method分析 81
4.5.1.2 TEM分析 84
4.5.2 結晶相轉換 92
4.5.2.1 晶格常數計算 92
4.5.2.2 拉曼光譜分析 95
4.5.3 綜合討論 105
第五章 結論 109
第六章 未來研究方向與建議 110
參考文獻 112
附錄 A 116
附錄 B 118
附錄 C 123
自述 126
1. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, and Applications, Chapman and Hall, New York, 1990.
2. B. Jaffe, W. R. Cook, Jr, and H. Jaffe, Piezoelectric Ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U. S. A., 1971.
3. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley and Sons, New York, 1976.
4. L. C. Dufour, C. Monty, and G. P. Ervas., Surfaces and Interfaces of Ceramic Materials; pp. 521-533, Kuwer Academic, Boston, 1989.
5. S. Aoyagi, Y. Kuroiwa, A. Sawada, H. Kawaji, and T. Atake, “Size Effect on Crystal Structure and Chemical Bonding Nature in BaTiO3
Nanopowder,” J. Therm. Anal. Calorim., 81, 627-630 (2005).
6. Y. Kuroiwa1, S. Aoyagi, A. Sawada1, H. Ikawa,Yamashita, N. Inoue, and T. Atake, “Structure Study of Perovskite-Type Fine Particles by Synchrotron Radiation Powder Diffraction,” J. Therm. Anal. Calorim., 69, 933-938 (2002).
7. S. Aoyagi, Y. Kuroiwa, A. Sawasada, I. Yamashita, and T. Atake, “Composite Structure of BaTiO3 Nanoparticle Investigated by SR X-Ray Diffraction,” J. Phys. Soc. Jpn., 71 [5] 1218-1221 (2002).
8. T. Takeuchi, K. Ado, T. Asai, H. Kageyama, Y. Saito, C. Masquelier, and O. Nakamura, “Thickness of Cubic Surface Phase on Barium Titanate Single-Crystalline Grains,” J. Am. Ceram. Soc., 77 [6] 1665-1668 (2007).
9. K. Uchino, E. Sadanaga, and T. Hirose, “Dependence of the Crystal Structure on Particle Size in Barium Titanate,” J. Am. Ceram. Soc., 72 [8] 1555-1558 (1989).
10. B. D. Begg, E. R. Vance, and J. Nowotny, “Effect of Particle Size on the Room-Temperature Crystal Structure of Barium Titanate,” J. Am. Ceram. Soc., 77 [12] 3186-3192 (1994).
11. M. Yashima, T. Hoshina, D. Ishimura, S. Kobayashi, W. Nakamura, T. Tsurumi, and S. Wada, “Size Effect on the Crystal Structure of Barium Titanate Nanoparticles,” J. Appl. Phys., 98, 014313 (2005).
12. D. E. Rase and R. Roy, “Phase Equilibria in the System BaO–TiO2,” J. Am. Ceram. Soc., 38 [3] 102-113 (1955).
13. Y. H. Hu, M. P. Harmer, and D. M. Smyth, “Solubility of BaO in BaTiO3,” J. Am. Ceram. Soc., 68 [7] 372-376 (1985).
14. S. Lee, C. A. Randall, and Z. K. Liu, “Modified Phase Diagram for the Barium Oxide–Titanium Dioxide System for the Ferroelectric Barium Titanate,” J. Am. Ceram. Soc., 90 [8] 2589-2594 (2007).
15. S. Lee, Z. K. Liu, M. H. Kim, and C. A. Randall, “Influence of Nonstoichiometry on Ferroelectric Phase Transition in BaTiO3,” J. Appl. Phys., 101, 054119 (2007).
16. N. M. Hwang, S. H. Yoon, J. H. Lee, and D. Y. Kim, “Effect of the Liquid-Phase Characteristic on the Microstructures and Dielectric Properties of Donor- (Niobium) and Acceptor- (Magnesium) Doped Barium Titanate,” J. Am. Ceram. Soc., 86 [1] 88-92 (2003).
17. J. K. Lee, K. S. Hong and J. W. Jang, “Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics,” J. Am. Ceram. Soc., 84 [9] 2001-2006 (2001).
18. 汪建民,材料分析,中國材料科學學會,台灣台北,2002。
19. J. D. Freire and R. S. Katiyar, “Lattice Dynamics of Crystals with Ttragonal BaTiO3 Structure,” Phys. Rev. B, 37 [4] 2074-2085 (1988).
20. G. Burns and B. A. Scott, “Lattice Modes in Ferroelectric Perovskite : PbTiO3,” Phys. Rev. B, 7 [7] 3088-3101 (1973).
21. J. T. Last, “Infrared-Absorption Studies on Barium Titanate and Related Materials,” Phys. Rev., 105 [6] 1740-1750 (1957).
22. U. D. Venkateswaran, V. M. Naik, and R. Naik, “High-Pressure Raman Studies of Polycrystalline BaTiO3,” Phys. Rev. B, 58 [21] 14256-14260 (1998).
23. E. V. Mejia-Uriarte, R. Y. Sato-Berru, M. Navarrete, M. Villagran-Muniz, C. Medina-Gutierrez, C. Frausto-Reyes, and H. Murrieta S, “Phase Transition of Polycrystalline BaTiO3 at High-Pressure detected by a Pulsed Photoacoustic technique,” Meas. Sci. Technol., 17, 1319-1323 (2006).
24. R. Naik, J. J. Nazarko, C. S. Flattery, U. D. Venkateswaran, V. M. Naik, M. S. Mohammed, G. W. Auner, J. V. Mantese, N. W. Schubring, A. L. Micheli, and A. B. Catalan, “Temperature Dependence of the Raman Spectra of Polycrystalline Ba1-xSixTiO3,” Phys. Rev. B, 61 [17] 11367-11372 (2000).
25. Y. J. Jiang, L. Z. Zeng, R. P. Wang , Y. Zhu and Y. L. Liu, “Fundamental and Second Order Raman Spectra of BaTiO3,” J. Raman Spectrosc., 27, 31-34 (1996).
26. Q. Zhang, T. Cagin, and W. Goddard, “The Ferroelectric and Cubic Phases in BaTiO3 Ferroelectrics are also Antiferroelectric,” Proc. Natl. Acad. Sci., 103 [40] 14695-14700 (2006).
27. T. C. Huang, M. T. Wang, H. S. Sheu, and W. F. Hsieh, “Size-Dependent Lattice Dynamics of Barium Titanate Nanoparticles,” J. Phys.: Condens. Matter., 19, 476212 (2007).
28. W. Zhong, R. D. King-Smith, and D. Vanderbit, “Giant LO-TO Splitting in Perovskite Ferroelectrics,” Phys. Rev. Lett., 72 [22] 3618-3621 (1994).
29. S. Y. Kuo, W. Y. Liao, and W. F. Hsieh, “Structural Ordering Transition and Repulsion of the Giant LO-TO Splitting in polycrystalline BaXSr1-XTiO3,” Phys. Rev. B, 64, 224103 (2001).
30. C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. thesis, The Pennsylvania State University, U. S. A., 1990.
31. H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr., 22 151 (1967).
32. A. C. Larson and R. B. V. Dreele, General structure analysis system, Los Alamos National Laboratory, Los Alamos, 1988.
33. L. K. Templeton and J. A. Pask, “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2 ,”J. Am. Ceram. Soc., 42, 212-216 (1959).
34. K. H. Felgner, T. Muller, H. T. Langhammer, and H. P. Abicht, “ On the Formation of BaTiO3 from BaCO3 and TiO2 by Microwave and Conventional Heating,” Mater. Lett., 58 [12-13] 1943-1947 (2004).
35. P. K. Dutta, P. K. Gallagher, and J. Twu, “Raman Spectroscopic and Thermoanalytical Studies of the Reaction of Ba(OH)2 with Anatase and Titanium Oxide Gels,” Chem. Mater, 4 [4] 847-851 (1992).
36. J. Javadpour and N. G. Eror, “Raman Spectroscopy of Higher Titanate Phases in the BaTiO3-TiO2 System,” J. Am. Ceram. Soc., 71 [4] 206-213 (1988).
37. J. Nowotny and M. Rekas, “Defect Structure, Electrical Properties and Transport in Barium Titanate. VII. Chemical Diffusion in Nb-Doped BaTiO3,” Ceram. Int., 20, 265-275 (1994).
38. G. V. Lewis, C. R. A. Catlow, and R. E. W. Casselton, “PCTR Effect in BaTiO3,” J. Am. Ceram. Soc., 68 [10] 555-558 (1985).
39. 陳皇鈞,陶瓷材料概論 上冊,曉園出版社,台灣台北,1991。
40. 陳皇鈞,陶瓷材料概論 下冊,曉園出版社,台灣台北,1991。
41. 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華圖書,台灣台北,2003。
42. 洪連輝、劉立基、魏榮君,固態物理學導論,高立圖書,台灣台北,2004。
43. 向性一,鈦酸鋇粉末鐵電區與介電性質之研究,國立成功大學礦冶及材料研究所博士論文,民國84年。
44. D. Y. Lu, M. Sugano, X. Y. Sun, and W. H. Su, “X-ray Photoelectron Spectroscopy Study on Ba1-XEuxTiO3,” Appl. Surf. Sci., 242, 318-325 (2005).
45. S. M. Mukhopadhyay and T. C. S. Chen, “Surface Chemical States of Barium Titanate: Influence of Sample Processing,” J. Mater. Res., 10 [6] 1502-1507 (1995).
46. G. Arlt, D. Hennings, and G. de With, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” J. Appl. Phys., 58 [4] 1619-1625 (1985).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top