跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡重光
研究生(外文):Chong-Guang Jian
論文名稱:筆記型電腦拆解回收之多目標最佳化程序與輔助決策系統建置
論文名稱(外文):Multi-criteria optimal process for recycling EOL laptops and its decision support system
指導教授:施勵行施勵行引用關係
指導教授(外文):Li-Hsing Shih
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:124
中文關鍵詞:產品壽命終了WEEE妥協規劃法啟發式演算法
外文關鍵詞:Heuristic methodEOLWEEECompromise Programm
相關次數:
  • 被引用被引用:6
  • 點閱點閱:444
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:0
根據環保署統計2006年度台灣地區筆記型電腦(Laptops)回收量只有9,233台,可知筆記型電腦回收量相當低。我國又為筆記型電腦的全球製造中心,品牌廠商對於延長生產者責任(extended producer’s responsibility)與「廢棄電子電機回收指令」(WEEE, Waste Electrical and Electronic Equipment)逐漸的重視。 一般而言,產品壽命終了(End-of-Life, EOL)的處理流程包含拆解程序、粉碎程序、一般廢棄物處置以及有害廢棄物處置,不同的處理程序會影響產品回收之成本/利潤與環境衝擊,所以產品壽命終了程序是企業施行永續發展所關注一項議題。
  為解決產品回收程序之問題而導入為回收而設計(Design for Recycling, DfR)的概念,利用快速評估有助於綠色設計的方法,在產品設計階段就考量了產品回收的經濟與環境的效益與衝擊。所以本研究利用啟發式方法(Heuristic method)求解考量經濟效益與環境衝擊之多目標規劃並利用妥協規劃法(Compromise Programming)求解雙目標最佳化之求最佳解,在經濟效益與環境衝擊之間取得一個平衡點。
  為了使上述求解過程更加便利,本研究利用電腦程式語言Visual Basic及資料庫Access建立了輔助決策系統。系統內建的資料庫包含有成本資料庫、收益資料庫、環境衝擊資料庫…等。利用內建資訊庫與所輸入筆記型電腦相關資訊後決策系統可輸出單目標經濟效益最大化與雙目標最佳化的結論。
  研究結果中範例機型考量雙目標下,上蓋、下蓋與面板模組都為拆解處理流程,而鍵盤與硬碟模組,則拆解至第1個零件其餘粉碎處理,電路板模組則為前面6個拆解其餘粉碎處理。根據敏感度分析,結果發現本研究EOL筆記型電腦最佳化程序分析之下,鋁合金外殼為最具經濟效益,原因在於鋁合金外殼相對於ABS外殼具有較高的回收價值,符合實際的狀況。而矽膠型鍵盤則在去除其他零件的條件假設下,在雙目標最佳化分析為環境衝擊的最低者,符合DfR的概念中減少零件數的使用。LED背光源與CCFL背光源比較下不論在經濟效益或環境衝擊都有顯著的增長,即可說明LED不但對於節能有所助益更在EOL的回收效益與環境衝擊也佔有優勢。
According to the environmental protection bureau’s statistics, there were only 9,223 laptops been recycled in 2006 which was considered low. We, as the center laptop manufacturer around the world, the brand merchant regarding lengthens the producers’ responsibility with (WEEE, Waste Electrical and Electronic Equipment) the gradual value. Generally speaking, product life end (End-of-Life, EOL) the processing flow contains the opening procedure, the smashing procedure, common reject handling as well as toxic waste handling, the different disposal procedure can affect cost of profit and the environment impacts the product recycling Therefore, the product life end procedure was the enterprise executes continues forever the development to pay attention to as a subject.
 In order to solve the problem of the product recovery procedure to induct the concept of recycling designs (Design for Recycling, DfR), the use of fast appraisal is helpful to the green design method. It has considered the product recycling economy and the environment benefit and the impact in the product design stage. Therefore, this research uses the heuristic method to solve the consideration economic efficiency and the environment impact the multi-goals plan and (Compromise Programming) solves the double goal optimization using the compromise plan law to ask the best solution. As to obtain a balance point between the economic efficiency and the environment impact.
 In order to cause the above solution process to be more convenient, this research has established the auxiliary decision system using computer programming language (Visual Basic) and information bank Access. In the system constructs the information bank contains the cost of information bank, the income of information bank, the environment impact of information bank. Construct of the information storehouse uses to input the notebook computer correlation information to the decision system to be possible to output the simple target for economic efficiency maximization and the double goal optimization conclusion.
 In the findings of the model type considers under the double goal, the top head sets, under covers sets, all for the opening solution processing flow with the kneading board, but keyboard sets with hard disk sets opens the solution to 1st components other than smashing processing The electric circuit board sets opens solution other than smashing processing for the former 6 process. According to the sensitivity analysis, the results discovery under this research of EOL notebook computer optimization procedure analysis. The aluminum alloy outer covering for the most economic efficiency. The reason lies in the aluminum alloy outer covering to be opposite to the ABS outer covering has the higher recycling value, conforms to be the actual condition. But the rubber keyboard removes other components under the condition supposition, under the double goal optimization analysis for low environment impact. It conforms in the DfR concept to reduce the zero number of articles to be used. LED back photo source and under CCFL back photo source, the comparison no matter all has reveals the growth in the economic efficiency or the environment impact, then explains LED not only to have regarding the energy conservation to be helpful. It also holds the superiority in the EOL recycling benefit and the environment impact.
目錄
中文摘要-----------------------------------------------------------------------------------------------i
英文摘要-----------------------------------------------------------------------------------------------i
致謝---------------------------------------------------------------------------------------------------iii
目錄---------------------------------------------------------------------------------------------------iv
表目錄------------------------------------------------------------------------------------------------vi
圖目錄-----------------------------------------------------------------------------------------------vii
第一章 緒論----------------------------------------------------------------------------------------1
 1.1 研究背景與動機---------------------------------------------------------------------------1
1.2 研究目的------------------------------------------------------------------------------------2
 1.3 研究方法與流程---------------------------------------------------------------------------3
第二章 文獻探討----------------------------------------------------------------------------------5
 2.1 產品拆解與順序---------------------------------------------------------------------------5
 2.2 產品回收最佳程序------------------------------------------------------------------------9
 2.3 產品生命週期評估-----------------------------------------------------------------------11
 2.4 多目標規劃--------------------------------------------------------------------------------14
第三章 成本效益評估與產品環境衝擊評估------------------------------------------------18
3.1 拆解及回收成本效益評估--------------------------------------------------------------19
 3.1.1 拆解及回收問題概述---------------------------------------------------------------19
 3.1.2 拆解與粉碎回收成本效益估算模式---------------------------------------------20
3.1.3 拆解-粉碎分界點之利潤估算-----------------------------------------------------28
 3.2 產品環境衝擊評估-----------------------------------------------------------------------30
  3.2.1 拆解回收相關之環境衝擊---------------------------------------------------------31
  3.2.2 拆解-粉碎分界點之環境衝擊估算-----------------------------------------------32
第四章 筆記型電腦EOL最佳化程序與決策系統建置-----------------------------------34
4.1 啟發式求解雙目標最佳化EOL程序-------------------------------------------------34
 4.2 筆記型電腦拆解架構--------------------------------------------------------------------38
  4.2.1 筆記型電腦與桌上型電腦的差異------------------------------------------------38
  4.2.2 筆記型電腦的拆解架構------------------------------------------------------------39
 4.3 妥協規劃法求解雙目標最佳化--------------------------------------------------------40
 4.4 系統建置-----------------------------------------------------------------------------------43
  4.4.1 系統架構與功能---------------------------------------------------------------------44
  4.4.2 系統計算模組------------------------------------------------------------------------47
 4.4.3 輔助資訊系統之介面與操作------------------------------------------------------50
第五章 實例研究---------------------------------------------------------------------------------58 
5.1 產品基本資料-----------------------------------------------------------------------------58
5.2 範例分析-----------------------------------------------------------------------------------62
5.3 敏感度分析--------------------------------------------------------------------------------72
5.4 實例研究結論-----------------------------------------------------------------------------90
第六章 結論與建議------------------------------------------------------------------------------96
 6.1 結論-----------------------------------------------------------------------------------------96
 6.2 建議-----------------------------------------------------------------------------------------97
參考文獻---------------------------------------------------------------------------------------------99
 中文部分-----------------------------------------------------------------------------------------99
 英文部份----------------------------------------------------------------------------------------100
附錄A----------------------------------------------------------------------------------------------103
參考文獻
中文部份
(1)市川芳明,「環境適合設計の実際」,才一厶社出版局,東景,2001。
(2)李珣琮,「LCD類產品回收之最佳化程序研究」,成功大學資源工程系碩士論文,2006。
(3)呂穎彬,「生命週期評估資料庫應用」,工業污染防治,66期,頁113-139, 1998。
(4)許志義,「多目標決策」,五南圖書出版公司,2003。
(5)黃峰蕙、施勵行、林秉山,「生產與作業管理」,三民書局,1997。
(6)張乃斌,「環境數學系統優化原理」,新雅出版社,1997。
(7)張禹晰,「電子電器產品再生策略選定與成本效益評估及智慧型決策支援系統之開發」,成功大學資源工程系碩士論文,2004。
(8)黃建中、禹鴻文,「生命週期評估於產品環境風險評估之應用」,工安環保,33期,2006。
(9)楊致行,「生命週期評估技術介紹」,工業技術研究院,1998。
(10)董瑞安,「廢筆記型電腦回收處理技術之評估研究-LCD回收處理技術可行性評估」,國立清華大學原子科學系,1999。



















英文部分
(1)C. Andres, S. Lozano, and B. Adenso-Diaz, “Disassembly sequence planning in a disassembly cell context,” Robotics and Computer-Integrated Manufacturing, vol. 23, pp. 690-695, 2007.
(2)F. J. André, M. A. Cardenete, and C. Romero, “Using Compromise Programming for Macroeconomic Policy Making in a General Equilibrium Framework: Theory and Application to the Spanish Economy,” Journal of the Operational Research Society, Vol. 56, No. 6, pp. 687-698, 2005.
(3)J. W. K. Chan, “Product end-of-life options selection: grey relational analysis approach,” International Journal of Production Research, Vol. 8, No. 1, pp. 1-24, 2007.
(4)J. Dong, and D. Arndt, “A Review of current research on disassembly sequence generation and computer aided design for disassembly” Proceedings of the Institution of Mechanical Engineers, Vol. 217, pp. 299-312, 2003.
(5)J. Dong, and P. Gibson, and G. Arndt, “Disassembly sequence generation in recycling based on parts accessibility and end-of-life strategy,” Proceedings of the Institution of Mechanical Engineers - Part B: Journal of Engineering Manufacture, Vol. 221, No. 6, pp.1079, 2007.
(6)L. Duta, F. G. Filip, and J. M. Henrioud, “Method for Dealing with Multi-Objective Optimization Problem of Disassembly Processes,” Internation Symposium on Assembly and Task Planning, pp. 163-168, July, 2003.
(7)K. Feldmann, S. Trautner, and O. Meedt, “Innovative disassembly strategies based on flexible partial destructive tools,” Annual Review in Control, Vol. 23, pp. 159-164, 1999.
(8)K. Feldmann, S. Trautner, H. Lohrmann, and K. Melzer, “Computer-based product structure analysis for technical goods regarding optimal end-of-life strategies,” Engineering Manufacture, Vol. 215, No. 5, pp. 684-693, 2001.
(9)B. Gonzalez, and B.Adenso-Diaz, “A scatter search approach to the optimum disassembly sequence problem,” Computers & Operations Research, vol. 33, No. 6, pp. 1776–1793, 2006.
(10)A. Gupta, and A. Sivakumar, “Simulation based multiobjective schedule optimization in semiconductor manufacturing,” Proceeding of the 2002 Winter Simulation Conference, Vol. 2, pp.1862-1870, 2002.
(11)A. Gungor, and S. M. Gupta, “An evaluation methodology for disassembly processes,” Computers and Industrial Engineering, Vol. 33, No. 1-2, pp. 329-332, 1997.
(12)A. Gungor, and S. M. Gupta, “Disassembly sequence plan generation using a branch-and-bound algorithm,” International Journal of Production Research, Vol. 39, No. 3, pp. 481-509, 2001.
(13)A. Hula, K. Jalali, K. Hamza, S. J. Skerlos, and K. Saitou, “Multi-Criteria Decision-Making for Optimization of Product Disassembly under Multiple Situations,” Environmental Science & Technology, Vol. 37, No. 23, pp. 5303-5313, 2003.
(14)T. Harjula, B. Rapoza, W. A. Knight, and G. Boothroyd, “Design for disassembly and the environment,” Annals of the CIRP, Vol. 45, No. 1, pp. 109-114, 1996.
(15)M. R. Johnson, and M. H. Wang, “Economical evaluation of disassembly operations for recycling, manufacturing and reuse,” International Journal of Production Research, Vol. 36, No. 12, pp. 3227-3252, 1998.
(16)S. Kara, P. Pornprasitpol, and H. Kaebernick, “Selective Disassembly Sequencing: A Methodology for the Disassembly of End-of-Life Products,” CIRP Annals - Manufacturing Technology, Vol. 55, No.1, pp.37-40, 2006.
(17)A. J. D. Lambert, and S. M. Gupta, “Demand-driven disassembly optimization for electronic consumer goods,” Journal of Electronics Manufacturing, Vol. 11, No. 2, pp. 121-135, 2002.
(18)A. J. D. Lambert, “Exact methods in optimum disassembly sequence search for problems subject to sequence dependent costs,” The International Journal of Management Science, Vol. 34, No. 6, pp. 538-549, 2006.
(19)S. G. Lee, S. W. Lye, and M. K. Khoo, “A multi-objective methodology for evaluating product end-of-life options and disassembly,” The International Journal of Advanced Manufacturing Technology, Vol. 18, pp. 148-156, 2001.
(20)J. Li, H. C. Zhang, M. A. Gonzalez, and S. Yu,” A multi-objective fuzzy graph approach for modular formulation considering end-of-life issues,” International Journal of Production Research, Vol. 45, No. 1 pp. 1-23, 2007.
(21)P. D. Lit, P. Latinne, B. Rekiek, and A. Delchambre, “Assembly planning with an ordering genetic algorithm,” International Journal of Production Research, Vol. 39, No. 16, pp. 3623-3640, 2001.
(22)G. G. Merino, D.D. Jones, D.L. Clements, and D. Miller, “Fuzzy compromise programming with precedence order in the criteria,” Mathematics and Computation, Vol. 134, pp. 185–205, 2003.
(23)D. Navin-Chandra, “The recovery problem in product design,” Journal of Engineering Design, Vol. 5, No. 1, pp. 65-86, 1994.
(24)M. A. Parra, A. B. Terol, B. P. Gladish, and M.V. Rodrıguez, “Solving a multiobjective possibilistic problem through compromise programming,” European Journal of Operational Research, Vol. 164, pp. 748–759, 2003.
(25)PR’e Consultant, “Simapro5 Databases Manual Method Library,” PR’e Consultant, Netherland, 2001.
(26)PR’e Consultant, “Simapro5 User Manual,” PR’e Consultant, Netherland 2001.
(27)P. Prodanovic, and S. P. Simonovic, “Fuzzy Compromise Programming for Group Decision Making,” transactions on systems and cybernetics-part A : systems and humans, Vol. 33, No. 3, pp. 358-365, 2003.
(28)J. Rosell, N. Munoz, and A. Gambin, “Robot tasks sequence planning using petri nets,” International Symposium on Assembly and Task Planning, pp. 24-29, 2003.
(29)C. M. Rose, “A New Approach to End-of Life Design Advisor,” Electronics and the Environment, 2000. ISEE 2000. Proceedings of the 2000 IEEE International Symposium, pp. 100-104, 2000.
(30)L. H. Shih, and S. C. Lee, “Optimizing Disassembly and Recycling Process for EOL LCD-Type Products: A Heuristic Method,” IEEE Transaction on Electronics Packaging Manufacturing, Vol. 30, No. 3, pp.213-220, 2007.
(31)Y. Shimizu, K. Tsuji, and M. Nomura, “Optimal disassembly sequence generation using a genetic programming,” International Journal of Production Research, Vol. 45, No. 18, pp. 4537 – 4554, 2007.
(32)K. K. Seo, J. H. Park, and D. S. Jang, “Optimal disassembly sequence using genetic algorithms considering economic and environmental aspects,” International Journal of Advanced Manufacturing Technology, Vol. 18, No. 5, pp. 371-380, 2001.
(33)J. P. Wang, and V. Allada, “Hierarchical fuzzy neural network-based serviceability evaluation,” International Journal of Agile Management Systems, Vol. 2, No. 2, pp.130-141, 2002.
(34)C. C. Wu, and N. B. Chang, “Corporate optimal production planning with varying environmental costs: A grey compromise programming approach,” European Journal of Operational Research, Vol. 155, No. 1, pp. 68-95, 2002.
(35)B. Willems, W. Dewulf, and J. Duflou, “End-of-life strategy selection: a linear programming approach to manage innovations in product design,” Proceedings of the 11th CIRP LCE International Seminar, Belgrade, Servië, pp. 35-43, 2004.









網站部份
1.環保署基管會網站http://recycle.epa.gov.tw/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top