跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭兆祺
研究生(外文):Chao-Chi Cheng
論文名稱:(Y1-xTbx)2.97Ce0.03Al5O12螢光粉之型態、晶體結構、與螢光特性
論文名稱(外文):Morphology, Crystal Structure, and Fluorescent Property of (Y1-xTbx)2.97Ce0.03Al5O12 Phosphors
指導教授:黃啟原黃啟原引用關係
指導教授(外文):Chi-Yuen Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:101
中文關鍵詞:鋱鋁石榴石紅位移噴霧乾燥釔鋁石榴石
外文關鍵詞:YAGTAGSpray DryRed Shift
相關次數:
  • 被引用被引用:7
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用調整 pH 值方式,使反應物達到均勻混合與分散目的,並以固相反應法合成 (Y1-xTbx)2.97Ce0.03Al5O12 螢光粉體,討論粉體型態、晶體結構與螢光特性之間關連性。
第一部份利用噴霧乾燥法製備不同粒徑大小與分佈 YAG:Ce3+ 前導物,討論在合成 YAG:Ce3+ 螢光粉體時,型態對螢光特性造成的影響。研究發現藉由噴霧參數改變,可以獲得不同粒徑大小和分佈造粒粉體,且經過1500oC/4 h 熱處理後,兩種型態之前導物會收縮至類似的大小,但表面型態不同,推測是因為內部緻密程度不同,造成收縮程度不一樣,而在此溫度下,大尺寸粉體於多處同時進行成核和成長,使得外觀類似多晶陶瓷粉體之結構,晶粒越完整或顆粒越大,均可使螢光強度增強。
第二部份利用微波乾燥法製備不同 Tb3+ 添加量 YAG:Ce3+, Tb3+ 前導物,討論從 YAG 至 TAG 主體轉換造成內部晶體結構產生變化,而對螢光特性造成的影響。研究發現在 1500oC/24 h 熱處理下,可以合成純相 YAG/TAG:Ce,且晶粒大小類似,當 Tb3+ 添加量增加時,使晶格間距變大,Y-O 和 Tb-O 鍵長增加,但局部 Ce-O 鍵長受到壓縮反而縮短,Ce3+ 受到較強之晶格場作用,躍遷能階分裂變大,而光譜產生紅位移。
This study uses pH controlled to make the reactant well mixed and dispersed, and synthesizes (Y1-xTbx)2.97Ce0.03Al5O12 phosphors with solid-state reaction, to discusses the relationships of powders morphology, crystal structure and fluorescence properties.

First part uses spray-drying to obtain different size and distribution YAG:Ce3+ precursor, discussing the morphology influence fluorescence properties on synthesizing YAG:Ce3+ phosphors. The study shows changing spray drying conditions can obtain different size and distribution precursors. After 1500oC/4 h heat treatment, the dense state different makes two size precursors shrinking into the similar one, and the surface state different. Large powders nucleate and grow everywhere and the morphology liked polycrystals. Both large and complete grains increase the fluorescence properties.

Second part uses microwave-drying to synthesize YAG:Ce3+, Tb3+, discussing the internal crystal structure change from host transition, and influences the fluorescence properties. The study shows pure YAG/TAG:Ce3+ phase can obtained at 1500oC/24 h heat treatment, and the grain size similar. As Tb3+ increases, the lattice distance of Y-O and Tb-O increases, but the partial Ce-O distance decreases. Ce3+ affects strong crystal field and the energy level increases, the fluorescence properties shift to long wavelength.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 2
第二章 理論基礎與相關研究 3
2-1 固態螢光材料發光原理 3
2-1-1 躍遷機制 3
2-1-2 法蘭克-康頓原理 3
2-1-3 史托克位移 5
2-1-4 晶格場理論 8
2-2 噴霧乾燥簡介 8
2-2-1 噴霧乾燥原理 8
2-2-2 影響造粒粉體型態因素 11
2-3 釔鋁石榴石螢光粉簡介 15
2-3-1 石榴石晶體結構 15
2-3-2 異種離子添加之螢光粉體 17
2-4 影響YAG:Ce3+, Tb3+ 發光之因素 20
2-4-1 能量激發、緩解、轉移與放射模式 20
2-4-2 雜質毒劑與濃度淬滅效應 25
2-4-3 庫倫靜電作用、電子雲膨脹與晶格場分裂效應 26
2-4-4 主體晶格與固態粉末之吸收效應 30
2-4-5 螢光粉型態 31
第三章 實驗方法與步驟 34
3-1 起始原料 34
3-2 螢光粉製備 34
3-3 螢光粉性質分析 39
3-3-1 表面型態分析 39
3-3-2 均勻度分析 39
3-3-3 粒徑分佈量測 39
3-3-5 相鑑定 42
3-3-6 晶格常數計算 42
3-3-7 晶體結構分析 45
3-3-8 吸收光譜 47
3-3-9 陰極螢光光譜 47
3-3-10 光激發光譜 48
第四章 結果與討論 51
4-1 起始原料鑑定 51
4-2 噴霧乾燥 Y2.97Ce0.03Al5O12 螢光粉體之型態與螢光性質 51
4-2-1 噴霧乾燥測試 51
4-2-2 均勻度、合成、型態 64
4-2-3 螢光性質 69
4-3 (Y1-xTbx)2.97Ce0.03Al5O12 螢光粉體之成分、結構與螢光性質 73
4-3-1 合成、型態 73
4-3-2 晶體結構 76
4-3-3 螢光性質 82
4-3-4 綜合討論 88
第五章 結論 94
第六章 未來研究 95
參考文獻 96
自述 101
1.陳昱霖,石榴石 (Y3Al5O12) 螢光體之合成與性質研究,國立成功大學材料科學及工程學系碩士論文,2001。
2.劉如熹和劉宇�琚A發光二極體用氧氮螢光粉介紹,全華圖書,台灣台北,2006。
3.R. M. Clegg, X. F. Wang, and B. Herman, Chemical analysis series, John Wiley and Sons, New York, 137, 196 (1996).
4.H. W. Leverenz, An introduction to luminescence of solids, John Wiley and Sons, New York, 1950.
5.M. Fox, Optical properties of solids, Oxford University Press, United Kingdom, 2001.
6.R. Roy, Experimenting with truth, Pergamon, New York, 1980.
7.A. Putnis, Introduction to mineral science, Cambridge University Press, New York, 1992.
8.F. Iskandar, L. Gradon, and K. Okuyama, “Control of the morphology of nanostructured particles prepared by spray drying of a nanoparticle sol,” J. Colloid Interface Sci., 265, 296-303 (2003).
9.G. L. Messing, S. C. Zhang, and G. V. Jayanthi, “Ceramic powder synthesis by spray pyrolysis,” J. Am. Cream. Soc., 76 [11] 2707-2726 (1993).
10.W. J. Walker, S. R. James, and S. K. Verma, “Influence of slurry parameters on the characteristics of spray-dried granules,” J. Am. Cream. Soc., 82 [7] 1711-1719 (1999).
11.Y. Itoh, I. W. Lenggoro, S. E. Pratsinis, and K. Okuyama, “Agglomerate-free BaTiO3 particles by salt-assisted spray pyrolysis,” J. Mater. Res., 17 [12] 3222-3229 (2002).
12.余樹楨,晶體之結構與性質,渤海堂文化公司,台灣台北,1996。
13.L. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem., 43, 7656-7664 (2004).
14.D. A. Pawlak, K. Woźniak, Z. Frukacz, T. L. Barr, D. Fiorentino, and S. Seal, “ESCA studies of yttrium aluminum garnets,” J. Phys. Chem., B 103 1454-1461 (1999).
15.Y. N. Xu, and W. Y. Ching, “Electronic structure of yttrium aluminum garnet (Y3Al5O12),” Phys, Rev., B 59 [16] 10530-10535 (1999).
16.T. Hahn, International tables for crystallography, Volume A, Space-group symmetry, 2nd revised Ed., D. Reidel Publishing Company, Holland, 1987.
17.G. H. Dieke, and H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Optics, 2 [7] 675-686 (1963).
18.劉如熹和紀喨勝,紫外光發光二極體用螢光粉介紹,全華圖書,台灣台北,2003。
19.劉如熹和王健源,白光發光二極體製作技術-21 世紀人類的新曙光,全華圖書,台灣台北,2005。
20.R. D. Shannon “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst., A 32, 751-767 (1976).
21.G. Blasse, and A. Bril, “Investigation of some Ce3+-activated phosphors,” J. Chem. Phys., 47 [12] 5139-5145 (1967).
22.H. Merenga, J. Andriessen, and C. W. E. Van Eijk, “Positions of 4f and 5d energy levels of Ce3+ in the band gap of CeF3, YAG and LSO,” Radiat. Meas. 24 [4] 343-346 (1995).
23.M. Nazarov, “Luminescence mechanism of highly efficient YAG and TAG phosphors,” Moldavian J. Phys. Sci., 4 [3] 347-356 (2005).
24.W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, New York, 1976.
25.C. G. Bergeron, and S. H. Risbud, Introduction to phase equilibria in ceramics, Am. Ceram. Soc. Inc., Columbus, 1984.
26.M. J. Weber, Phosphor handbook, The CRC Press, Boca Raton, 1999.
27.G. Blasse, and B. C. Grabmaier, Luminescent materials, Springer-Verlag, Berlin, 1994.
28.R. A. Rodríguez-Rojas, E. De la Rosa-Cruz, L. A. Díaz-Torres, P. Salas, R. Meléndrez, M. Barboza-Flores, M. A. Meneses-Nava, and O. Barbosa-García, “Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation,” Opt. Mater., 25, 285-293 (2004).
29.Y. C. Kang, I. W. Lenggoro, S. B. Park, and K. Okuyama, “Photoluminescence characteristics of YAG: Tb phosphor particles with spherical morphology and non-aggregation,” J. Phys. Chem. Solids, 60, 1855-1858 (1999).
30.Y. C. Kang, I. W. Lenggoro, S. B. Park, and K. Okuyama, “YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis,” Mater. Res. Bull., 35, 789-798 (2000).
31.Q. Li, L. Gao, and D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+,” Mater. Chem. Phys., 64, 41-44 (2000).
32.J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan, and L. P. Huang, “A novel synthesis of phase-pure ultrafine YAG: Tb phosphor with different Tb concentration,” Mater. Lett., 57, 3077-3081 (2003).
33.D. Hreniak, W. Strek, P. Mazur, R. Pazik, and M. Zabkowska-Waclawek, “Luminescence properties of Tb3+: Y3Al5O12 nanocrystallites prepared by the sol-gel method,” Opt. Mater., 26, 117-121 (2004).
34.G. Del Rosario, S. Ohara, L. Mancic, and O. Milosevic, “Characterisation of YAG:Ce powders thermal treated at different temperatures,” Appl. Surf. Sci., 238, 469-474 (2004).
35.X. Li, H. Liu, J. Wang, H. Cui, and F. Han, “YAG:Ce nano-sized phosphor particles prepared by a solvothermal method,” Mater. Res. Bull., 39, 1923-1930 (2004).
36.K. Y. Jung, D. Y. Lee, and Y. C. Kang, “Morphology control and luminescence properties of Y3Al5O12: Tb particles prepared by spray pyrolysis,” Mater. Res. Bull., 40, 2212-2218 (2005).
37.X. Li, H. Liu, J. Wang, H. Cui, S. Yang, and I. R. Boughton, “Solvothermal synthesis and luminescence properties of YAG: Tb nano-sized phosphors,” J. Phys. Chem. Solids, 66, 201-205 (2005).
38.G. Xia, S. Zhou, J. Zhang, S. Wang, and J. Xu, “Solution combustion synthesis, structure and luminescence of Y3Al5O12: Tb3+ phosphors,” J. Alloy. Compd., 421 [1-2] 294-297 (2006).
39.S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG: Re (Re= Ce3+, Pr3+, Tb3+),” J. Lumin., 118, 179-185 (2006).
40.S. Saxena, “Sol-gel preparation and optical characterization of TbxY3-xAl5O12,” Mater. Lett., 60, 1315-1318 (2006).
41.A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J. E. Jørgensen, and A. Kareiva, “Photoluminescence in sol-gel-derived YAG:Ce phosphors,” J. Cryst. Growth, 304, 361-368 (2007).
42.Z. Wu, X. Zhang, W. He, Y. Du, N. Jia, and G. Xu, “Preparation of YAG:Ce spheroidal phase-pure particles by solvo-thermal method and their photoluminescence,” J. Alloy. Compd., (2008).
43.K. Zhang, H. Z. Liu, Y. T. Wu, and W. B. Hu, “Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant,” J. Alloy. Compd., 453, 265-270 (2008).
44.Y. S. Lin, R. S. Liu, and B. M. Cheng, “Investigation of the luminescent properties of Tb3+ -substituted YAG:Ce, Gd phosphors,” J. Electrochem. Soc., 152 [6] J41-J45 (2005).
45.R. Turos-Matysiak, W. Gryk, M. Grinberg, Y. S. Lin, and R. S. Liu, “Tb3+→Ce3+ energy transfer in Ce3+ -doped Y3-xTbxGd0.65Al5¬O12,” J. Phys.: Condens., Matter, 18, 10531-10543 (2006).
46.Y. S. Lin, and R. S. Liu, “Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination,” J. Lumin., 122-123, 580-582 (2007).
47.C. C. Chiang, M. S. Tsai, and M. H. Hon, “Synthesis and photoluminescent properties of Ce3+ doped terbium aluminum garnet phosphors,” J. Alloy. Compd., 431, 298-302 (2007).
48.M. Nazarov, D. Y. Noh, J. Sohn, and C. Yoon, “Quantum efficiency of double activated Tb3Al5O12:Ce3+, Eu3+,” J. Solid State Chem., 180, 2493-2499 (2007).
49.M. Nazarov, D. Y. Noh, J. Sohn, and C. Yoon, “Influence of additional Eu3+ coactivator on the luminescence properties of Tb3Al5O12:Ce3+, Eu3+,” Opt. Mater., (2007).
50.H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin., 126, 371-377 (2007).
51.M. S. Tsai, G. M. Liu, and S. L. Chung, “Fabrication of cerium active terbium aluminum garnet (TAG:Ce) phosphor powder via the solid-state reaction method,” Mater. Res. Bull., 43, 1218-1222 (2008).
52.J. A. DeLuca, “An introduction to luminescence in inorganic solid,” J. Chem. Educ., 57 [8] (1980).
53.D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys., 21 [5] 836-850 (1953).
54.K. Y. Jung, and H. W. Lee, “Enhanced luminescent properties of Y3Al5O12:Tb3+, Ce3+ phosphor prepared by spray pyrolysis,” J. Lumin., 126, 469-474 (2007).
55.G. W. Berkstresser, J. Shmulovich, T. C. D. Huo, and G. Matulis, “Growth parameter optimization and Tb3+ sensitization of Ce3+ activated Y3Al5O12 phosphor,” J. Electrochem. Soc.: Solid-State Sci. Technol., 134 [10] 2624-2628 (1987).
56.H. Yang, and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors,” J. Lumin., (2008).
57.C. H. Lu, H. C. Hong, and R. Jagannathan, “Sol-gel synthesis and photoluminescence properties of cerium-ion doped yttrium aluminum garnet powders,” J. Mater. Chem., 12, 2525-2530 (2002).
58.M. Batentschuk, A. Osvet, G. Schierning, A. Klier, J. Schneider, and A. Winnacker, “Simultaneous excitation of Ce3+ and Eu3+ ions in Tb3Al5O12,” Radiat. Meas. 38, 539-543 (2004).
59.T. Y. Tien, E. F. Gibbons, R. G. DeLosh, P. J. Zacmanidis, D. E. Smith, and H. L. Stadler, “Ce3+ activated Y3Al5O12 and some of its solid solutions,” J. Electrochem. Soc.: Solid-State Sci. Technol., 120 [2] 278-281 (1973).
60.D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” J. Electrochem. Soc.: Solid-State Sci. Technol., 126 [9] 1550-1555 (1979).
61.J. A. Koningstein, “Energy levels and crystal-field calculations of europium and terbium in yttrium aluminum garnet,” Phys. Rev., 136 [3] A A717-A725 (1964).
62.J. S. Kim, J. Y. Kang, P. E. Jeon, J. C. Choi, H. L. Park, and T. W. Kim, “GaN-based white-light-emitting diodes fabricated with a mixture of Ba3MgSi2O8:Eu2+ and Sr2SiO4:Eu2+ phosphors,” Jpn. J. Appl. Phys., 43 [3] 989-992 (2004).
63.P. D. Rack, and P. H. Holloway, “The structure, device physics, and material properties of thin film electroluminescent displays,” Mater. Sci. Eng., R 21 [4] 171-219 (1998).
64.S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+),” J. Lumin., 118, 179-185 (2006).
65.A. K. Kitai, Solid state luminescence, Chapman and Hall press, New York, (1993).
66.P. W. Atkins, Physical chemistry 6th Ed., Oxford University Press, Tokyo, 1998.
67.P. Y. Jia, J. Lin, X. M. Han, and M. Yu, “Pechini sol-gel deposition and luminescence properties of Y3Al5-x¬GaxO12:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+; 0≦x≦5) thin films,” Thin Solid Films, 483, 122-129 (2005).
68.Y. D. Huh, Y. S. Cho, and Y. R. Do, “The optical properties of (Y1-xGdx)3-z(Al1-yGay)5O12:Cez phosphors for white LED,” Bull. Korean Chem. Soc., 23 [10] 1435-1438 (2002).
69.T. Y. Tien, E. F. Gibbons, R. G. DeLosh, P. J. Zacmanidis, D. E. Smith, and H. L. Stadler, “Ce3+ activated Y3Al5O12 and some of its solid solutions,” J. Electrochem. Soc.: Solid-State Sci. Technol., 120 [2] 278-281 (1973).
70.J. M. Robertson, M. W. Van Tol, W. H. Smits, and J. P. H. Heynen, “Colourshift of the Ce3+ emission in monocrystalline epitaxially grown garnet layers,” Philips J. Res., 36 [1] 15-30 (1981).
71.李玄閔,石榴子石 YAG/TAG:Ce 固態螢光粉體之成份、結構與性質關連性,國立成功大學資源工程研究所博士論文計劃書,2008。
72.C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. thesis, The Pennsylvania State University, U. S. A., 1990.
73.許樹恩和吳泰伯,X 光繞射原理與材料結構分析,中國材料科學學會,台灣台北,1993。
74.劉文貴,(Na0.5K0.5)NbO3 - SrZrO3 系統之合成、分析、及介電性質,國立成功大學資源工程研究所碩士論文,2005。
75.劉康權,次微米級螢光粉噴霧乾燥製程之研究,國立交通大學應用化學研究所碩士論文,2004。
76.楊智量,藉 pH 值控制混和之固相反應製備的 YAG:Ce 粉體分析及其螢光性質,國立成功大學資源工程研究所碩士論文,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊