跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何宗祐
研究生(外文):Tsung-Yu Ho
論文名稱:向陽絹雲母水熱合成方沸石、氫氧鈣霞石及氫氧方鈉石之研究
論文名稱(外文):A Study on the Hydrothermal Synthesis of Analcime, Hydroxycancrinite and Hydroxysodalite from Hsiang-Yang Sericite Ore
指導教授:雷大同
指導教授(外文):Dahtong Ray
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:181
中文關鍵詞:絹雲母氫氧方鈉石葉蠟石水熱反應方沸石氫氧鈣霞石
外文關鍵詞:hydroxysodalitehydroxycancriniteanalcimehydrothermal synthesispyrophyllitesericite
相關次數:
  • 被引用被引用:9
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台東縣海端鄉利稻村向陽東南方5公里處蘊藏豐富的絹雲母礦,可採礦量高達1,500萬噸,礦床為絹雲母-葉蠟石-石英片岩,為台灣地區唯一自片岩中生產雲母粉的礦區,亦為台灣省極為獨特之天然資源。目前由民間礦業公司開採,年產量有三萬噸左右,是台灣地區最具經濟價值的工業礦物原料之一。
向陽絹雲母原礦經水洗選礦後,粒徑細於400號篩,礦物組成以絹雲母及葉蠟石為主,及少量綠泥石,絹雲母含量約60%,葉蠟石約40%。本研究以洗選後絹雲母原樣、珠磨機研磨之研磨樣、>10μm及<2μm分級樣為原料,以NaOH及Na2SiO3為礦化劑,進行水熱反應合成沸石礦物,探討原料性質、礦化劑濃度、反應溫度、持溫時間對沸石相的產生及晶形的影響。
試驗結果顯示:向陽絹雲母經水熱反應可合成方沸石、氫氧鈣霞石及氫氧方鈉石。溫度須達210℃以上,水熱合成沸石之反應方能大幅度進行,沸石生成量隨溫度升高而增加,溫度達240℃時,沸石相繞射峰最大,顯示反應快速進行。
以NaOH為礦化劑,240℃下,NaOH大致以1M及5M為界,分為三個濃度範圍,在各範圍中,原樣、研磨樣、>10μm及<2μm分級樣均有類似之反應產物。[NaOH]≦1M,產物為方沸石(analcime,[NaAlSi2O6•H2O]),結晶為四角三八面體( <2μm分級樣除方沸石外,尚生成一種未命名的鈉鋁矽酸鹽水合物(sodium aluminum silicate hydrate,[NaAlSi2O6•1.1H2O],其化學式僅較方沸石多0.1莫耳之H2O,結晶為長方柱);[NaOH]=2M~4M,產物為氫氧鈣霞石(hydroxycancrinite,[Na8(AlSiO4)6(OH)2•2H2O]),結晶為短柱狀或針狀,[NaOH]≧5M,產物為氫氧方鈉石(hydroxysodalite,[Na8(AlSiO4)6(OH)2]),結晶為十二面體。細察反應結果;發現>10μm分級樣(葉蠟石70%,絹雲母30%)較易合成氫氧鈣霞石,而<2μm分級樣(絹雲母75%,葉蠟石25%)較易合成氫氧方鈉石。
以Na2SiO3為礦化劑([Na2SiO3]=0.5M~5M),240℃下,原樣、研磨樣、>10μm及<2μm分級樣之產物皆為方沸石,結晶為良好之四角三八面體。
在不同水熱反應之條件下,葉蠟石繞射峰之消失速率均較絹雲母快,顯示葉蠟石較絹雲母容易進行水熱反應,但礦化劑濃度增高,絹雲母與葉蠟石之鹼溶速率趨於接近。
沸石產物之粒徑以>10μm分級樣最大,依次為原樣、<2μm分級樣,研磨樣之產物最小,顯示原料粒徑越大,沸石產物粒徑亦越大。研磨樣因粒徑小,不僅所合成的沸石粒徑小,反應亦能在較低溫、較短時間內完成。
氫氧化鈉系統中,合成沸石的反應有一最適反應持溫時間,超過該時間,則出現第二相,不利產物相之純度;在矽酸鈉系統中,方沸石為唯一生成相,長時間持溫不但無第二相,且方沸石結晶越趨完美之四角三八面體。
在水熱反應初期,方沸石結晶表面有翅狀凸出物,隨著反應時間之增加,翅狀凸出物減少甚至消失,方沸石晶面趨於平坦,顯示方沸石細在原料礦物之邊或面上成核,翅狀物是尚未反應之絹雲母,因粒徑大、鹼度、溫度、或持溫時間尚未達到最適值等因素,較慢溶解,導致初期生成之方沸石結晶表面殘留翅狀物。
產物以沈降法測定粒徑分佈,其中位粒徑(d50)與SEM照片目測(50顆以上)之平均粒徑結果頗為一致,但粒徑分佈範圍較廣,與SEM照片所顯示接近單一粒徑之結果不符,原因可能係產品中有第二相外,另沸石以叢聚方式(cluster)生長,聚晶體無法打散,粒度儀量測的粒徑尚包括聚晶體粒徑,此現象以研磨樣所得產物最為明顯。除研磨樣外,分佈模數(k)與原料粒徑成反比關係,原料粒徑小者,k值大,表示粒徑分佈範圍較窄,或趨向單一粒徑。
A huge amount of reserves of sericite deposite is located at about 5 kilometers in the southeast direction of Hsiang-Yang, Lidao village, Haiduan, Taitung county. The recoverable amount is estimated to be about 15 million tons. This sericite deposit belongs to the sericite- pyrophyllite- quartz schist. It is the only one of mine producing mica powders from the schist in Taiwan Province and is an extremely unique natural resource. The annual production at present is about 30,000 tons. It is one of the most economically important industrial minerals in Taiwan Province.
The particle size of Hsiang-Yang sericite is smaller than 400 mesh sizes after water-classification. The mineral compositions are sericite and pyrophyllite as well as a small amount of chlorite. The content of sericite is about 60% which pyrophyllite is 40%. In this study, the processed sericite supplied by Sunshine Mineral Company (as recieved), samples ground using a stirrer beads mill (ground) and classified samples (>10μm and <2μm) were used as the starting material. Hydrothermal reactions was used to synthesize zeolites with the mineralizers, NaOH and Na2SiO3. The reaction conditions investigated were raw material properties, concentration of mineralizers, reaction temperature and the time frame of temperature retention so as to find their effects on the phase and morphology of zeolites produced.
From the results, it is dound that analcime, hydroxycancrinite and hydroxysodalite can be synthesized from Hsiang-Yang sericite by hydrothermal reactions. The temperature must reach above 210℃, so that the hydrothermal reactions can be carried out substantially. The formation of zeolites increases as temperature is increased. At the temperature of 240℃, the XRD pattern of zeolites were maximum indicating rapid reactions.
Using NaOH as the mineralizer, at 240℃, concentration of NaOH can be roughly divided by 1M and 5M into three ranges. In each range, as received, ground, >10μm and <2μm samples all had similar zeolite products. For [NaOH]≦1M, the product is trapezohedron-shaped analcime [NaAlSi2O6•H2O] (besides analcime, the product of <2μm samples also included an unnamed sodium aluminum silicate hydrate [NaAlSi2O6•1.1H2O], with rectangular column. It chemical formula has 0.1 mole more of H2O then analcime); for [NaOH]=2M~4M, the product is short rod-like or needle-shaped hydroxycancrinite [Na8(AlSiO4)6(OH)2•2H2O]; for [NaOH]≧5M, the product is dodecahedral hydroxysodalite [Na8(AlSiO4)6(OH)2]. A close examination of the reaction results, it is found that >10μm samples (pyrophyllite70%, sericite 30%) can synthesize hydroxycancrinite rather easily, which <2μm samples (sericite 75%, pyrophyllite 25%) can synthesize hydroxysodalite.
Using Na2SiO3 ([Na2SiO3]=0.5M~5M) as the mineralizer, at 240℃, the product of as received, ground, >10μm and <2μm samples were all analcime with perfect trapezohedron crystal form.
Under various reaction conditions, it is found that diffraction peaks of pyrophyllite always disappeared at a faster rate than sericite with the showing that pyrophyllite reacts more easily than sericite in the hydrothermal synthesis process. However, at high concentration of mineralizers, the dissolution rates of three ~ two minerals by alkaline approached similar.
The particle size of the zeolite products synthesized from >10μm samples as the largest, followed by as received, and <2μm samples. The smallesr sizes are from ground samples. This shows that the size of the raw materials and that of the products are in proportion. Due to the extremely small sizes of ground samples, not only the synthesized zeolites are small, the reaction can also occur at at lower temperatures and finish reaction in shorter time.
In the NaOH system, the synthesis reactions have an optimal time of reaction. Beyond the optimum, a second phase appeared and is deleterious to the purity of the product. In Na2SiO3 system, analcime is the only phase synthesized. Longer time of temperature retention did not produce second phase, in contrary, helped analcime forming perfect trapezohedron crystal .
In the early stage of nucleation, there were wing-like projections of the analcime crystal planes. As the reaction proceeded, the wing-like projections decreased and finally disappeared resulting in flat crystal plane. This shows that nucleation of analcime occurred at the edges or faces of raw materials and the wing-like projections are unreacted sericite particles, which have not completely dissolved probably due to their large particle sizes and the alkalinity, reaction temperature and time have not reached the optimum.
The zeolite products sizes were measured by the sedimentation method. The median size(d50) were consistent with the average sizes visually counted (over 50 particles) from SEM pictures. However, the particle size distributions were wider than the seemingly mono-sized results of SEM pictures. This might be due to the second phase in the product, more important is that because of the cluster growth of zeolites. The aggregates cannot be broken so their sizes were incorporated into the particle size distributions. This phenomenon was especially obvious for the product of ground samples. The distribution modulus (k) was inversely proportional to the size of the raw materials for the other three samples. If the particle sizes of the raw materials was smaller, distribution modulus was larger representing a narrower particle size distribution or approaching mono-size.
摘要 ............................................................I
Abstract ....... III
誌謝 .......VI
表目錄 ........ X
圖目錄 .......XI
第一章 緒論 1
1.1 前言.......................................................................................... 1
1.2 研究目的...................................................................................... 4
第二章 理論基礎與前人研究......................................................................... 5
2.1 層狀矽酸鹽礦物之結晶構造...................................................................... 5
2.1.1 葉蠟石..................................................................................... 13
2.1.2 絹雲母..................................................................................... 14
2.2 沸石......................................................................................... 17
2.2.1 方沸石..................................................................................... 23
2.2.2 氫氧鈣霞石................................................................................. 28
2.2.3 氫氧方鈉石................................................................................. 31
2.3 沸石之結晶行為............................................................................... 35
2.4 礦化劑作用................................................................................... 42
第三章 實驗材料與步驟............................................................................ 44
3.1 實驗材料..................................................................................... 44
3.1.1 絹雲母原樣................................................................................. 44
3.1.2 藥品....................................................................................... 50
3.2 水熱反應設備................................................................................. 51
3.3 實驗步驟與條件............................................................................... 52
3.3.1 樣品前處理................................................................................. 52
3.3.2 水熱反應實驗步驟........................................................................... 56
3.3.3 水熱反應之條件............................................................................. 58
3.4 性質分析..................................................................................... 60
3.4.1 粒徑分析................................................................................... 60
3.4.2 X 光繞射(XRD)分析.......................................................................... 60
3.4.3 掃描式電子顯微鏡(SEM)影像分析.............................................................. 60
3.4.4 原子吸收光譜儀(AA)化學成分分析............................................................. 60
3.4.5 比表面積-中孔洞測定儀(BET)測定............................................................. 60
3.4.6 熱差DTA、熱重TG、微分熱重DTG 性質測定...................................................... 60
第四章 結果與討論................................................................................ 62
4.1 反應溫度對沸石生成之影響..................................................................... 62
4.2 礦化劑濃度對沸石生成之影響................................................................... 82
4.2.1 氫氧化鈉................................................................................... 82
4.2.2 矽酸鈉..................................................................................... 91
4.3 持溫時間對沸石生成之影響..................................................................... 99
4.3.1 氫氧化鈉為礦化劑........................................................................... 99
4.3.2 矽酸鈉為礦化劑............................................................................ 120
4.4 起始原料與沸石相關係綜論.................................................................... 127
4.5 沸石生成機制................................................................................ 129
4.6 沸石產物之性質測定.......................................................................... 131
4.6.1 比表面積測定.............................................................................. 131
4.6.2 粒徑分析.................................................................................. 132
第五章 結論..................................................................................... 136
參考文獻........................................................................................ 138
附錄A 安德利森瓶(Andreasen pipte)粒徑分佈量測步驟............................................... 143
附錄B 熱分析結果................................................................................ 146
附錄C 高倍率SEM 照片............................................................................ 149
附錄D 市售葉蠟石水熱反應試驗結果.................................................................185
附錄E 水熱反應原料產物重量表.................................................................... 188
1. 陳其瑞,”台東縣向陽雲母礦成因之初步研究,”經濟部中央地質調查所特刊3 號,161-169 頁(民國73 年)。
2. 台灣地區雲母之利用與流向調查,經濟部礦業司,台灣礦業,第47 卷第4 期,第451-467 頁(民國84 年12 月)。
3. 魏稽生及譚立平,台灣非金屬經濟礦物,141-150 頁,經濟部中央地質調查所,民國86 年。
4. Hedrick, J.B., “Mica” U.S. Geological Survey Minerals YearBook-2004.
5. Klein, C. and C.S. Hurlbut, Jr.,” Manual of Mineralogy,” Revised 21th ed., John Wiley & Sons, Inc., New York, 1999.
6. Madhukar, B.B.L. and S.N.P. Srivastava, Mica and mica industry, A.A. Balkema, Rotterdam, 1995.
7. 王明光,土壤環境礦物學,藝軒圖書出版社,台灣,2000 年1 月1 日。
8. 任磊夫,黏土礦物與黏土岩,地質出版社,北京市,1992 年2 月。
9. 張振輝,向陽絹雲母礦中絹雲母及葉蠟石水熱改質研究,國立成功大學資源工程學系碩士論文,94 年6 月。
10. 劉玉梅,向陽絹雲母礦中葉蠟石水熱合成方沸石之研究,國立成功大學資源工程學系碩士論文,95 年6 月。
11. 唐啟祥,楊留方,吳興惠,”天然沸石及沸石類分子篩,” 材料導報,18卷,1 期,256-259 頁(2004)。
12. Ackley, M.W., S.U. Rege and H. Saxena, “Application of natural zeolites in the purification and separation of gases”, Microporous and Mesoporous Materials, Vol. 61, No. 1, pp. 25-42(2003).
13. Kowalak, S. and A. Jankowska ,”Application of zeolites as matrices for pigments,” Microporous and Mesoporous Materials, Vol. 61, No. 1, pp.213-222(2003).
14. Tomasevi-Anovi, M., A. Dokovi, G. Rottinghaus and A. Arov-Stan, ”Adsorption of ochratoxin A by octadecyldimethylbenzylheulandite tuff,” Microporous and Mesoporous Materials, Vol. 61, No. 1, pp.173-180(2003).
15. Zorpas, A.A., E. Kapetaniosc, G.A. Zorpas, P. Karlisc, A. Vlyssidesc, I. Haralambousc and M. Loizidouc , “Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production,” Waste Management, Vol. 23, No.131 1 , pp. 27-35(2003).
16. Kithome M.J.,W. Paul and L.M. Lavkukich, "Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite," Soil Science Society of America Journal, Vol. 62, pp.622-629(1998).
17. 謝華林,李立波,"改性沸石對重金屬離子吸附性能的試驗研究," 非金屬礦,28 卷,2 期,47 頁(2005)。
18. 許秀成,”天然沸石在農業與肥料中的應用,” 磷肥與複肥,17 卷,3 期,77 頁(2004)。
19. 謝冠群,盧雁,周建國,”用天然斜發沸石從西藏地熱水中分離提取K+、Rb+、Cs+的研究,” 離子交換與吸附,18 卷,2 期,150 頁(2002)。
20. 劉遠金,李華興,李華興,”天然沸石對魚塘水及污水的氮磷去除效應,”農業環境保護,21 卷,24 期,331 頁(2002)。
21. 權新軍,金為群,李豔,”改性天然沸石處理富營養化公園水樣的實驗研究, ” 非金屬礦,21 卷,1 期,48 頁(2002)。
22. 朱克銀,”天然沸石處理氨氮廢水及農作物應用研究,” 安徽化工,2 卷,32 頁(2001)。
23. Tricoli, V. and F. Nannetti, "Zeolite-Nafion composites as ion conducting membrane materials," Electrochimica Acta, Vol. 48, No. 18, pp.2625-2633(2003).
24. Virta, R., “Zeolite,” U.S. Geological Survey-Minerals Information(1997).
25. Wilkin, R.T. and H.L. Barnes, “Nucleation and growth kinetics of analcime from precursor Na-clinoptilo- lite,” American Mineralogist, Vol. 85, pp.1329-1341 (2000).
26. Chaisena, A. and K. Rangsriwatananon, “Synthesis of sodium zeolite from natural and modified diatomite,” Materials Letters, Vol. 59, pp.1474-1479(2005).
27. Gerson, A.R. and K. Zheng, ” Bayer process plant scale: Transformation of sodalite to cancrinite,” Journal of Crystal Growth, Vol. 171, No. 1, pp.209-218(1997).
28. Barnes, M.C., J. Addai-Mensah and A.R. Gerson, ”The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor,”Microporous and Mesoporous Materials, Vol. 31, No. 3, pp. 287-302(1999).
29. Hassan, I., S.M. Antao and J.B. Parise, ”Cancrinite: Crystal structure, phase transitions, and dehydration behavior with temperature,” American Mineralogist, Vol. 91, No. 7, pp. 1117-1124(2006).
30. 經濟部礦務局:http://www.mine.gov.tw/Bible/index.asp
31. Google Map:http://maps.google.com.tw/
32. 陳勃怡,雷大同及蔡印來,”向陽絹雲母礦之礦物分佈研究,” 鑛冶,49卷,4 期,第137-142 頁(民國94 年12 月)。
33. 何宗祐,向陽絹雲母徑厚比特性及提純研究,國立成功大學學士論文,95 年7 月。
34. 張仲民,普通土壤學,國立編譯館出版,台北市,民國77 年。
35. Grim, R. E., ”Clay Mineralogy,” McGraw-Hill, New York, 1953.
36. 張郇生,從雲母來認識黏土礦物—兼論黏土,地質,民國82 年。
37. 趙杏媛及張有瑜,黏土礦物與黏土礦物分析,洋出版社,北京,1990 年5 月。
38. 溫紹炳,雷大同,黃紀嚴,台灣片狀矽酸鹽礦物之利用開發計劃書報告,經濟部礦業司,2000 年。
39. 陳培源,劉德慶,黃怡禎,臺灣之礦物,經濟部中央地質調查所,民國92 年。
40. Barrer, R.M., Hydrothermal Chemistry of Zeolites, Academic Press, 1982.
41. 吳榮宗,”工業觸媒概論,”國興出版社,1989。
42. Meier, W.J. and D. Olson, “Atlas of Zeolite Structure Types,” Butterworths, London, 1992.
43. 徐如人,龐文琴,屠昆崗,沸石分子篩的結構與合成,吉林大學出版社,1987。
44. Virta, R., Zeolite, U.S. Geological Survey-Minerals Information(1997).
45. Golden T.C. and S. Sircar, ” Synthetic heterogeneity in X zeolite for gas adsorption,” Journal of Colloid and Interface Science, Vol. 61, No. 1, pp.274-280(1991).
46. 李華興,張新明,李長洪,張方榮,盧維盛,劉遠金,"廣東省天然沸石的特性及其對土壤肥力的影響研究," 土壤與環境,5卷,4期,2002。
47. 韓成,葉大年,魯安懷,姚光光,嚴永鑫,唐軍利,朱桂珍,韓玉璞,"天然沸石在畜禽鉰養及糞便汙染治理中的應用研究," 岩石礦物學雜誌,18卷,4期,1999。
48. 劉鑫,劉福田,張寧,王冬至,"沸石負載納米TiO2光催化劑水處理研究進展," 矽酸鹽通報,6期,2006。
49. 陳養民,王香愛,李雅麗,"無磷助洗劑δ-層狀二矽酸鈉," 應用化工,35卷,4期,2006。
50. 李虎傑,易發成,"沸石對放射性核素Cs+,Sr2+的吸附阻滯作用," 礦物岩石,1期,2006。
51. 李全偉,張東,李帆,"沸石用於放射性廢樹脂水泥固化的試驗研究,"非金屬礦,28卷,5期,2005。
52. 胡宏杰,金梅,“沸石的結構和性能及應用展望,” 礦產保護與利用,6期, 2002。
53. Yokomori, Y. and S. Idaka, “The crystal structure of analcime,”Microporous and Mesoporous Materials, Vol. 21, pp.365-370(1998).
54. 陳方明,陸琦,于吉順,雷新榮,曹李靖,“方沸石的提純及其對含硫酸鹽的水的處理,” 化工礦物與加工,33卷,11期,2004。
55. 陳方明,李兆華,陸琦,"鄂爾多斯盆地白堊系方沸石岩的發現及其對硫酸鹽水的處理," 礦物岩石地球化學通報,25卷,4期,2006。
56. 陳方明,陸琦,"方沸石水質淨化劑的製備及其除氟研究," 環境工程學報,1卷,9期,2007。
57. 程石,湯中道,李少莉,"改性方沸石用於飲用水除氟的實驗研究,"非金屬礦,29卷,6期,2006。
58. 韓銀利,周惠康,余秋生,于艷青,"處理高氟水新礦物材料的試驗研究,"寧夏工程技術,6卷,4期,2007。
59. 胡艷海,周曉磊,李曉云,"天然方沸石制備離子篩試驗研究,"非金屬礦,30卷,3期,2007。
60. 李光輝,"天然沸石在奶牛飼養業中的應用,"乳業科學與技術,27卷,2期,2004。
61. 谷白云,孟長功,辛鋼,"鈉型方沸石與Cd2+的離子交換平衡研究,"石油化工,36卷,4期,2007。
62. International Zeolite Association (IZA): http://www.iza-online.org/
63. Jambor, J.L. and D.A. Vanko, ” New Mineral Names,” American Mineralogist, Vol. 78, pp.1314-1319(1993).
64. Luger, S., J. Felsche, and P. Fischer, ” Structure of hydroxysodalite Na8[AlSiO4]6(OH)2, a powder neutron diffraction study at 8 K,” Acta Crystallographica Section C, Vol. 43, pp.1-3(1987).
65. Henmi, T., "Synthesis of hydroxy-sodalite (“zeolite”) from waste coal ash," Japanese Society of Soil Science and Plant Nutrition, Vol. 33, No. 3, pp.517–521(1987).
66. Gobeltz, N., A. Demortier, J.P. Lelieura and C. Duhayonb, " Encapsulation of the chromophores into the sodalite structure during the synthesis of the blue ultramarine pigment," Journal of the Chemical Society, Faraday Transactions, Vol. 94, No. 15, pp.2257-2260(1998).
67. Khajavi, S., F. Kapteijn and J.C. Jansen, “Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation,” Journal of Membrane Science, Vol. 299, No. 1-2, pp.63-72(2007).
68. Breck, D.W., ”Crystalline molecular sieves,” Vol.41, pp678-684 (1964).
69. Kerr, G..T., "Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A," Journal of Physical Chemistry , Vol.70, no. 4, 1047-1050(1966).
70. Zhdanov, S. P., “Some problems of zeolite crystallization,” 2nd International Conference Molecular Sieve Zeolites, pp.19-40 (1970).
71. Derouanea, E. G., S. Determmeriea and Z. Gabelica, “Some problems of zeolite crystallization,” Applied catalysis, Vol. 1, pp.201-224(1981).
72. Kacirek, H. and H. Lechert, "Investigations on the Growth of the Zeolite Type NaY," Journal of Physical Chemistry, Vol. 79, no. 15, pp.1589-1593(1975).
73. Li, Y. and W. Yang, "Microwave synthesis of zeolite membranes: A review," Journal of Membrane Science, Vol. 316, pp.3-17(2008).
74. Michael, D., P. Mingos and D. R. Baghurst, "Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry," Chemical Society reviews, Vol. 20, pp.1-47(1991).
75. Youssef, H., D. Ibrahim and S. Komarneni, "Microwave-assisted versus conventional synthesis of zeolite A from metakaolinite," Microporous and Mesoporous Materials, In Press, Corrected Proof, Available online 4 March 2008.
76. Morgan, S. “Aquatic chemistry :An Introduction emphasizing chemical equilibria in natural water” 2nd, Wiley, New York, pp.541(1981).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top