跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高育儒
研究生(外文):Yu-Ju Kao
論文名稱:0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3壓電材料的晶粒大小對晶體結構與介電性質之影響
論文名稱(外文):Grain Size Effect on Crystal Structure and Dielectric Properties of 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 Piezoelectrics
指導教授:黃啟原黃啟原引用關係
指導教授(外文):Chi-Yuen Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:122
中文關鍵詞:晶域晶粒大小晶域壁壓電材料
外文關鍵詞:grain sizedomainpiezoelectric materialsdomain walls
相關次數:
  • 被引用被引用:3
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
基於電子產品朝向微型化之趨勢,產品中所使用的零組件除了必須縮小其尺寸與體積之外,還得增加其性能表現。就電子陶瓷而言,微型化即代表著晶粒縮小,而晶粒縮小對性質往往會有顯著的影響。

(Bi0.5Na0.5)TiO3為一熱門且被看好可用來取代PZT的壓電材料系統,其特色為製程中不需倚賴特殊氣氛,且不會有Pb逸散問題。故本研究將以固態反應法合成 (Bi0.5Na0.5)TiO3-BaTiO3系統中之MPB (morphotropic phase boundary) 組成之0.94(Bi0.5Na0.5)TiO3-0.06 BaTiO3,並利用製程的調整以製備具有不同晶粒大小之緻密陶瓷體,再來探討晶粒大小變化對晶體結構、介電性質、鐵電性質以及壓電性質之影響。

經實驗結果可以確定以下六點,第一、製備出平均晶粒大小從0.28 mm 至 1.20 mm 之陶瓷體,且其相對密度皆達到95% 以上。第二、經由 TEM 觀察到晶域寬度隨著晶粒減小而下降,並在小晶粒陶瓷體發現有明顯的晶域壁與晶界接觸 (coupling) 情形,此現象也將造成偶極及晶域壁轉向之困難。第三、於此次研究範圍內,晶粒大小並無明顯影響晶體結構。第四、介電常數 (er) 主要是由空間電荷以及晶界體積百分比所主導。第五、相變溫度 (Td及Tm) 隨著晶粒減小而下降。第六、介電常數 (eT33/ eo)、殘留極化量 (Pr)、壓電係數 (d33) 以及機電耦合因數 (kp) 表現主要由偶極轉向程度以及晶域壁密度決定。
Because the tendency of electronic industry is towards miniaturization, all the components in products have to decrease their size and enhance their performance. For electroceramics, the miniaturization of electroceramic components is accompanied by the necessity of reducing of the grain size, and it leads to begin investigating the grain size effect on properties.

(Bi0.5Na0.5)TiO3 is a popular and excellent material system in lead-free piezoelectric materials because of its advantage in free control atmosphere and no lead pollution during heat treatment. In this study, 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 is a composition within morphotropic phase boundary (MPB). It was prepared by solid state reaction method. The dense ceramics with various grain size distributions were prepared by adjusting process. And grain size effect on crystal structure, dielectric, ferroelectric and piezoelectric properties were studied in detail.

The results show that: First, the range of average grain size is from 0.28 mm to 1.20 mm, and the relative density of ceramics can achieve 95% at least. Second, the domain width decreases with decreasing grain size through TEM observation, and it is found that domain walls couple to grain boundary will make the alignment of dipoles and domain walls difficult in small-grain-size ceramics. Third, the variation in grain size doesn’t adjust the crystal structure significantly in this study. Fourth, dielectric constant (er) is dominated by space charge and the volumetric percent of grain boundary. Fifth, the temperature of phase transformation (Td and Tm) decreases with decreasing grain size. Sixth, dielectric constant (eT33/ eo), remnant polarization (Pr), piezoelectric coefficient (d33), and electromechanical coupling factor (kp) are dominated by the density of domain wall and the degree of alignment of dipoles.
摘要 I
Abstract II

誌謝 III

目錄 V
表目錄 VIII
圖目錄 IX

第一章 緒論 1
1-1前言 1
1-2 研究方向及目的 2

第二章 前人研究及理論基礎 3
2-1晶體結構及電性質 3
2-1-1 (Bi0.5Na0.5)TiO3晶體結構與電性 3
2-1-2 BaTiO3晶體結構與電性 9
2-2 介電性質 11
2-2-1 極化機制 11
2-2-2 介電特性參數 16
2-3 壓電性質 18
2-3-1 壓電效應 18
2-3-2 壓電特性參數 23
2-4 鐵電性質 24
2-4-1 鐵電效應 24
2-4-2 鐵電滯迴曲線 25
2-5 形變相界 (morphotropic phase boundary, MPB) 28
2-6 拉曼光譜儀 33
2-6-1拉曼光譜原理 33
2-6-2拉曼光譜在有序鈣鈦礦結構的應用 34
2-7 晶域結構 (domain structure) 36
2-8 晶粒大小效應 (grain size effect) 38
2-8-1 BaTiO3晶粒大小效應 38
2-8-2 Pb(Zr, Ti)O3晶粒大小效應 45

第三章 實驗方法及步驟 50
3-1起始原料 50
3-2粉末及陶瓷體製備 52
3-2-1粉末製備 52
3-2-2粉末之熱差/熱重分析 (Differential Thermal / Thermogravimetric analysis) 58
3-2-3陶瓷體製備及燒結條件試驗 58
3-3 材料特性分析 60
3-3-1 陶瓷體密度量測 60
3-3-2 相鑑定 60
3-3-3 晶格常數分析 61
3-3-4 掃描式電子顯微鏡 (SEM) 64
3-3-5 穿透式電子顯微鏡 (TEM) 64
3-3-6 拉曼光譜分析 65
3-3-7 晶粒大小與分佈計算 67
3-4 材料性質分析 67
3-4-1 陶瓷體電性質量測樣品準備 67
3-4-2 室溫介電常數與介電損失量測 67
3-4-3 相轉換溫度量測 68
3-4-4鐵電滯迴曲線量測 68
3-4-5 極化 69
3-4-6 壓電係數量測 69
3-4-7 機電耦合因數量測 69

第四章 結果與討論 70
4-1 粉末合成 70
4-2 粉末粒徑分析 72
4-3 燒結 74
4-3-1 燒結試驗及陶瓷體密度 74
4-3-2 陶瓷體之微結構觀察與成份均勻度分析 78
4-3-3 陶瓷體之晶粒大小與分佈 83
4-4 特性分析 85
4-4-1 顯微結構觀察與分析 85
4-4-2 X光繞射分析與晶格常數計算 89
4-4-3 拉曼光譜分析 92
4-5 性質分析 94
4-5-1 室溫介電常數–極化前 94
4-5-2 相轉換溫度 99
4-5-3 相角 (phase angle, q) 103
4-5-4 鐵電滯迴曲線 105
4-5-5 室溫介電常數–極化後 107
4-5-6 壓電係數 110
4-5-7 機電耦合因數 112
4-6 綜合討論 114

第五章 結論 118

參考文獻 119

自述 122
1. C. A. Randall, N. Kim, J. P. Kucera, W. Cao, and T. R. Shrout, “Intrinsic and extrinsic effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics,” J. Am. Ceram. Soc., 81 [3] 677- 88 (1998).

2. G. Arlt, D. Hennings, and G. de With, “Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys. 58 (4), (1985).

3. T. Takenaka, and H. Nagata, “Current status and prospects of lead-free piezoelectric ceramics,” J. Eur. Ceram. Soc., 25 2693-2700 (2005).

4. C. Peng, J.F. Li, and W. Gong, “Preparation and properties of (Bi0.5Na0.5)TiO3-Ba(Ti, Zr)O3 lead-free piezoelectric ceramics,” Mater. Lett., 59, 1576-1580 (2005).

5. W. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, and S. Fang, “Electromechanical and dielectric properties of Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-BaTiO3,” Mater. Chem. Phys., 94, 328-332 (2005).

6. J. Suchanicz, “Axial pressure effect on a phase transition nature and ferroelectric properties of single crystal Na0.5Bi0.5TiO3,” J. Phys. Chem. Solids, 62, 1271-1276 (2001).

7. G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3,” Acta Cryst., B58, 168-178 (2002).

8. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, “New ferroelectrics of complex composition,” Sov. Phys.-Solid State, 2 [11] 2651-2654 (1961).

9. S. B. Vakhrushev, V. A. Isupov, B. E. Kvyakovsky, N. M. Okuneva, I. P. Pronin, G. A. Smolensky, and P. P. Syrnikov, “Phase transition and soft mode in sodium bismuth titanate,” Ferroelectrics, 63, 153-160 (1985).

10. M. E. Lines and A. M. Glass, “Principles and applications of ferroelectrics and related materials,”Clarendon, Oxford (1977).

11. D. Hennings and A. Schnell, “Diffuse ferroelectric phase transition in Ba(Zr, Ti)O3 ceramics,” J. Am. Ceram. Soc., 65, 11, P539 (1982).

12. 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 222-224 (1994)。

13. 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 222-227 (1994)。

14. T. Takenaka, K. Maruyama, and K. Sakata, “(Bi0.5Na0.5)TiO3-BaTiO3 system for lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys., 30, 9B, 2236-2239 (1991).

15. X. G. Tang, J. Wang, X. X. Wang, and H. L. W. Chan, “Effects of grain size on the dielectric properties and tunabilities of sol-gel derived Ba(Zr0.2Ti0.8)O3 ceramics” Solid State Commun., 121, 297 (2004).

16. A. M. Glazer, “Simple ways of determining perovskite structure,” Acta Cryst., A31, 756-762 (1975).

17. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, William R. Cool, Jr. and Hans Jaffe Goulk Inc., Cleveland (1971).

18. D. Hennings, A. Schnell, and G. Simon, “Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics,” J. Am. Ceram. Soc., 65, 539 (1982).

19. A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons, Inc., New York (2003).

20. 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 7-9 (1994)。

21. 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 31-41 (1994)。

22. 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 16-19 (1994)。

23. 謝煜弘,電子材料,新文京開發出版有限公司,(2003)。

24. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, Academic, New York (1971).

25. 黃恩萍,角閃石類礦物之拉曼光譜研究,國立成功大學地球科學研究所碩士論文,(2003)。

26. J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, and G. Lucazeau, “An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3(0≦x≦1) solid solution,” J. Phys.: Condens. Matter, 12, 3267-3280 (2000).

27. 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 162 (1994)。

28. M. H. Frey, Z. Xu, P. Han, and D. A. Payne, “The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics,” Ferrolectrics, 206-207, 337-353 (1998).

29. D. A. Payne, Ph. D. Thesis, The Pennsylvania State University, U. S. A. (1973).

30. C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. Thesis, The Pennsylvania State University, U. S. A. (1990).

31. 向性一,鈦酸鋇粉末鐵電區與介電性質之研究,國立成功大學礦冶及材料科學研究所博士論文,(1995)。

32. X. Wang, H. L. Chan, and C. Choy, “Piezoelectric and dielectric properties of CeO2-added
(Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics,” Solid State Commun., 125, 395-399 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top