跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/29 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳翰林
研究生(外文):Han-Lin Wu
論文名稱:氣提法數學模式之研究
論文名稱(外文):A Mathematical Model Study for Air Sparging
指導教授:郭明錦
指導教授(外文):Min-Chin Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:揮發性有機物地下水氣體通道氣提法
外文關鍵詞:Air ChannelAir SpargingGroundwaterVOCs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
針對台灣地下水常見之揮發性有機污染物,氣提法是一種實用的整治技術。本論文使用氣體通道數學模式,以甲苯為例,了解氣提法對地下水甲苯污染物之移除效率。
本論文氣提法數學模式研究發現,甲苯移除效率隨著注氣流量及氣體飽和度的上升而增加。
In-situ air sparging is a widely used remedial technique to remove volatile organic compounds (VOCs) from groundwater. Using toluene as an example, this study applied the air channel model to understand the toluene removal efficiency through in-situ sparging.
The toluene removal efficiency increase as the air flow rate and the air saturation increase.
目 錄
摘要………………………………………………………………I
誌謝………………………………………………………………III
目錄………………………………………………………………IV
表目錄………………………………………………………… VI
圖目錄……………………………………………………………VII
第一章 前言……………………………………………………1
1-1 研究緣起………………………………………………1
1-2 研究目的………………………………………………3
第二章 文獻回顧………………………………………………4
2-1 氣提法整治技術………….…………………………4
2-2 氣泡流動幾何概念………………………………………8
2-3 氣提法數學模擬…………………..…………………11
第三章 研究方法….…………………………………………16
3-1 Elder氣體通道數值模擬系統之建立………………16
3-2砂箱試驗.. ……….…………………….……………21
3-2-1 砂箱試驗裝置……………………………………21
3-2-2 氣體飽和度與氣體通道量測……………………25
3-3 網格大小與模式應用研究………………………………27
第四章 結果與討論……………………………………………28
4-1 砂箱試驗結果…………………………………………28
4-1-1 氣體飽和度………………………………………28
4-1-2 氣體通道大小……………………………………32
4-2 模式輸出結果…………………………………………39
4-2-1輸入參數設定……………………………………39
4-2-2 污染物移除模擬結果……………………………42
4-3 網格設定與輸出結果…………………………………46
4-3-1 網格切割…………………………………………46
4-3-2各 模式輸出結果…………………………………50
第五章 結論與建議……………………………………………54
5-1 結論……………………………………………………54
5-2 建議……………………………………………………56
參考文獻………………………………………………………57
附錄……………………………………………………………60
自述……………………………………………………………71

表目錄

表 2-1 氣提法實驗之觀察表 ( Hydrogeology Journal 2001)……………10
表3-1 砂箱試驗之粗砂成份分析表……………………………23
表 4-1 中子測量數據與氣體飽和度換算表…………… ……30
表 4-2 模式輸入參數表...............................41
表 4-3 流量 40L/min 之 、 、Δt對照表................47
表 4-4 流量 60L/min 之 、 、Δt對照表................48
表 4-5 流量 80L/min 之 、 、Δt對照表................49

圖目錄

圖 2-1 模式氣體通道概念圖 (Elder et al., 1999)…………………………14
圖 2-2 模式質量傳輸示意圖 ( Elder et al., 1999)………………………...15
圖 3-1 砂箱試驗裝置圖.................................22
圖 3-2 砂箱試驗之粗砂粒徑分佈曲線圖....................................................24
圖 4-1 注氣流量與氣體飽和度關係圖....................................................31
圖 4-2 注氣流量60 L/min 土表氣體通道孔拍攝圖...................................33
圖 4-3 注氣流量60 L/min 土表氣體通道孔拍攝圖...................................34
圖 4-4 注氣流量40 L/min 土表氣體通道孔拍攝圖...................................35
圖 4-5 注氣流量40 L/min 土表氣體通道孔拍攝...................................36
圖 4-6 注氣流量80 L/min 土表氣體通道孔拍攝圖...................................37
圖 4-7 平均四分位數氣體通道直徑統計圖.............................................38
圖 4-8 Plume中甲苯濃度與注氣時間關係圖.............................................43.
圖 4-9 Plume中甲苯質量與注氣時間關係圖…...........................................44
圖4-10 Plume中甲苯濃度移除效率與注氣時間關係圖..............................45
圖4-11 流量40L/min 各網格Plume中甲苯質量與注氣時間關係圖.......51
圖4-12 流量60L/min 各網格Plume中甲苯質量與注氣時間關係圖.......52
圖4-13 流量80L/min 各網格Plume中甲苯質量與注氣時間關係圖... ...53
1.陳逸�U,“輕非水相液體水充排實驗之研究”,成功大學資源工程研究所碩士論文。2006。
2.蔡易縉,“氣提法地下水整治氣體流動路徑之研究-示蹤技術之應用”,成功大學資源工程研究所博士論文。2001
3.Ahlfeld, D., Dahmani, A., and Ji, W., A conceptual model of field behavior of air sparging and its implications for application. Groundwater Monitoring and Remediation, Fall, 132–139., 1994.
4.Acomb, L., McKay, D., Currier, P., Berglund, S., Sherhart, T., and Benediktsson, C., Neutron probe measurements of air saturation near an air sparging well. In situ aeration: Air sparging, bioventing and related remediation processes, R. Hinchee, R. Miller, and P. Johnson, eds., Battelle, Columbus, Ohio, 47–61, 1995.
5.Brown, R. A., Hicks, R. J., and Hicks, P. M., “Use of Air Sparging for In Situ Bioremediation. In Air Sparging for Site Remediation”, Hinchee, R.E., Eds., Lewis Publishers, Boca Raton, FL., pp. 38-55, 1994.
6.Braida, W., and Ong, S. K., “Modeling of Air Sparging of VOC-contaminated Soil Columns”, Journal of Contaminant Hydrology, v. 41, pp. 385-402, 2000.
7.Bird, R., Stewart, W., and Lightfoot, E., Transport phenomena. Wiley, New York. 1960.
8.Beggs, H. D., Gas production operations. Oil & gas consultants international, inc, 1984.
9.Elder, C., Benson, C, and Eykholt, G., Modeling mass removal during in situ air sparging. J. Geotechnical and Geoenvironmental Engineering 125 (11), 947-958, 1999.
10.Elder, C., and Benson, C., Air channel formation, size, spacing, and tortuosity during in situ air sparging. Groundwater Monitoring and Remediation 65 (3), 171-181, 1999.
11.Johnson, P. C., Das, A., and Bruce, C., “Effect of Flow Rate Changes and Pulsing on the Treatment of Source Zones by in Situ Air Sparging”, Environmental Science & Technology, v. 33, n. 10, pp. 1726-1731, 1999.
12.Johnson, C. D.,Rayner, J. L., Patterson, B. M., and Davis G. B., “Volatilization and Biodegradation during Air Sparging of Dissolved BTEX-contaminated Groundwater”, Journal of Contaminant Hydrology, v. 33, pp. 377-404, 1998.
13.Ji, W., Dahmani, A., Ahlfeld, D. P., Lin J. D., and Hill III, E. H., “Laboratory Study of Air Sparging: Air Flow Visualization”, Ground Water Monitoring & Remediation, v. 13, n. 4, pp. 115-126, 1993.
14.Kuo, M.C.T., Chen, C.M., Lin, C.H., Fang, H.C., Lee, C.H., Surveys of volatile organic compounds in soil and groundwater at industrial sites in Taiwan. Bull. Environ.Contam. Toxicol. 65, 654–659, 2000.
15.M.C. Marley, C.J. Bruell, H.H. Hopkins, Air sparging technology: A practice update, In: R.E. Hinchee, R.N. Miller, P.C. Johnson (Eds.), In Situ Aeration: Air Sparging, Bioventing, and Related Remediation Processes, Battelle Press, Columbus, OH, 1995, pp. 31–38,1995.
16.Murray, W. A., Lunardini, Jr. R. C., Ullo, Jr. F. J., and Davidson, M. E., “Site 5 Air Sparging Pilot Test, Naval Air Station Cecil Field, Jacksonville, Florida”, Journal of Hazardous Materials, v. 72, pp. 121-145, 2000.
17.McCabe, W. A., and Smith J. C., Unit operations of chemical engineering. McGraw-Hill, inc, 1976.
18.Mackay, D., and Shiu, W. Y., A critical review of Henry’s law constants for chemicals of environmental interest. J. Phys. Chem. Ref. Data 10 (4), 1175-1199, 1981.
19.McCabe, W. A., and Smith J. C., Unit operations of chemical engineering. McGraw-Hill, inc, 1976.
20.McKay, D., and Acomb, L., ‘‘Neutron moisture probe measurements of fluid displacement during in situ air sparging.’’ Groundwater Monitoring and Remediation, 16(4), 86–94, 1996.
21.Perry, R.H., and Chilton, S.C., Chemical Engineers’ Handbook, 5th
Edition, Int. Stud. Edition. McGraw-Hill Kogakusha Ltd., Auckland, 1973.
22.Peterson, J. W., DeBoer, M. J., and Lake, K. L., A laboratory simulation of toluene cleanup by air sparging of water-saturated sands. J. Hazard. Mater. 72, 167 – 178, 2000.
23.Peterson, J. W., Lepczyk, P. A., and Lake, K. L., “Effect of Sediment Size on Area of Influence during Groundwater Remediation by Air Sparging: A Laboratory Approach”, Environmental Geology, v. 38, n. 1, pp. 1-6, 1999.
24.Skelland, A., Diffusional mass transfer. Wiley, New York, 1974.
25.Treybal, R. E., Mass-transfer operations. McGraw-Hill, inc, 1980.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊