跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳孟儒
研究生(外文):Meng-Ru Wu
論文名稱:利用氮化鎂氮化鎵緩衝層和圖案化藍寶石基板於氮化物蕭基二極體與金半金光檢測器之研究
論文名稱(外文):The study of Nitride-based Schottky diode and MSM photodetector with MgN/GaN nucleation layer and patterned sapphire substrate
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:91
中文關鍵詞:蕭基二極體圖案化藍寶石基板金半金光檢測器氮化鎂氮化鎵緩衝層
外文關鍵詞:MgxNy/GaN buffer layerMSM photodetectorSchottky diodepatterned sapphire substrate (PSS)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用有機化學氣相沉積系統成長出具有十二對氮化鎂氮化鎵緩衝層的三五族氮化物材料,或是利用有機化學氣相沉積系統在圖案化藍寶石基板上成長出三五族氮化物材料。我們利用一些分析設備來對我們所成長出來的磊晶品質上的分析,而分析的設備包含霍耳量測、光致發光分析、高解析度X 光繞射儀、原子力顯微鏡,以及掃描式電子顯微鏡。接著,我們將這些具有氮化鎂氮化鎵雙緩衝層或是圖案化藍寶石基板的樣本製作成蕭基二極體和金半金光檢測器,然後對它做元件特性上的分析。
(I) 我們比較具有十二對氮化鎂氮化鎵緩衝層和一般傳統低溫緩衝層的氮化物材料所製造出來的金半金紫外光檢測器元件的特性,我們可以發現利用十二對氮化鎂氮化鎵緩衝層可以降低暗電流和提升紫外光對可見光比大約一個數量級。在一伏特的偏壓下,我們可以發現具有一般傳統低溫緩衝層的光檢測器的雜訊等效功率和檢測率分別為2.19 10-13 W和2.04 1012 cmHz0.5W-1,然而具有十二對氮化鎂氮化鎵緩衝層的光檢測器的雜訊等效功率和檢測率分別為1.11 10-13 W和6.05 1012 cmHz0.5W-1。而在蕭基二極體元件上,我們可以發現利用十二對氮化鎂氮化鎵緩衝層可以提高蕭基能障的高度。
(II) 我們比較在圖案化藍寶石基板和一般傳統藍寶石基板上成長的氮化物材料所製造出來的金半金紫外光檢測器元件的特性,我們可以發現利用圖案化藍寶石基板可以降低暗電流和提升紫外光對可見光比大約兩個數量級。在一伏特的偏壓下,我們可以發現利用一般傳統藍寶石基板的光檢測器的雜訊等效功率和檢測率分別為6.30 10-13 W和1.06 1012 cmHz0.5W-1,然而利用圖案化藍寶石基板的光檢測器的雜訊等效功率和檢測率分別為2.77 10-14 W和2.42 1013 cmHz0.5W-1。而在蕭基二極體元件上,我們可以發現利用圖案化藍寶石基板亦可以提高蕭基能障的高度。
In this thesis, the nitride-based III-V alloys with a 12-pair MgxNy/GaN double buffer layer or pattern sapphire substrate had been grown and characterized by metal organic chemical vapor deposition system (MOCVD). Several analysis techniques, such as Hall measurement, photoluminescence (PL), X-ray diffraction (XRD), and atomic force microscopy (AFM) had also been performed to characterize the crystal quality of these epitaxial layers. The Schottky barrier diodes and metal-semiconductor-metal (MSM) photodetectors were then fabricated.
(I) GaN-based metal-semiconductor-metal ultraviolet (UV) photodetectors (PDs) with 12-pair MgxNy/GaN buffer layer and low temperature GaN (LT-GaN) buffer layer were both fabricated and characterized. It was found that we can reduce dark leakage current and enhance UV-to-visible rejection ratio both by about one order of magnitude by using a 12-pair MgxNy/GaN buffer layer. With 1 V applied bias, it was found that noise equivalent power and normalized detectivity of the PD with LT-GaN buffer layer were 2.19 10-13 W and 2.04 1012 cmHz0.5W-1, respectively, while those of the PD with 12-pair MgxNy/GaN buffer layer were 1.11 10-13 W and 6.05 1012 cmHz0.5W-1, respectively. For the Schottky diode, it was found that we could use the 12-pair MgxNy/GaN buffer layer to enhance the Shottky barrier height.
(II) GaN-based metal-semiconductor-metal ultraviolet (UV) photodetectors (PDs) prepared on patterned sapphire substrate (PSS) and conventional flat sapphire substrate were both fabricated and characterized. It was found that we can reduce dark leakage current and enhance UV-to-visible rejection ratio both by about two orders of magnitude by using PSS. With 1 V applied bias, it was found that noise equivalent power and normalized detectivity of the PD prepared on conventional flat sapphire substrate were 6.30 10-13 W and 1.06 1012 cmHz0.5W-1, respectively, while those of the PD prepared on PSS were 2.77 10-14 W and 2.42 1013 cmHz0.5W-1, respectively. For the Schottky diode, it was also found that we could use the pattered sapphire substrates to enhance the Shottky barrier height.
Abstract (in Chinese) I
Abstract (in English) III
Acknowledgements V
Contents VI
Table captions IX
Figure captions X


Chapter 1 Introduction 1
1-1 Background 1
1-2 Motivation 4
1-3 Program 5

Chapter 2 Basic Theory and Measurement System 7
2-1 Metal-Semiconductor contact 7
2-2 Principle of the MSM photodetector 10
2-3 Schottky Barrier height 13
2-4 Internal gain 17
2-4.1 Theorem of J.C.C : trap-assisted tunneling mechanism 17
2-4.2 Theorem of O.K. : barrier height degradation 21
2-5 Measurement instruments 25
2-5.1 Atomic Force Microscopes (AFM) 25
2-5.2 X-ray Diffraction (XRD) 25
2-5.3 Hall measurement 26
2-5.4 Spectral Response and Other Measurement Systems 27

Chapter 3 The characterristics of GaN-based Schottky diode and MSM photodetectors with a 12-pair MgxNy/GaN buffer layer 37
3-1 Background 37
3-2 Experiment 39
3-2.1 The fabrication of the bulk GaN with MgxNy/GaN buffer layer 39
3-2.2 GaN MSM photodetectors 40
3-2.3 GaN Schottky diode 41
3-3 Characteristics of GaN-based MSM photodetectors with MgxNy/GaN buffer layer 42
3-4 Characteristics of GaN-based Schottky diode with MgxNy/GaN buffer layer 46

Chapter 4 The characterristics of GaN-based Schottky diode and MSM photodetectors prepared on patterned sapphire substrates 61
4-1 Background 61
4-2 Experiment 63
4-2.1 The fabrication of the bulk GaN with patterned sapphire substrates 63
4-2.2 GaN MSM photodetectors 64
4-2.3 GaN Schottky diode 65
4-3 Characteristics of GaN-based MSM photodetectors prepared on patterned sapphire substrates 66
4-4 Characteristics of GaN-based Schottky diode prepared on patterned sapphire substrates 70

Chapter 5 85
5-1 Conclusions 85
5-2 Future Works 86

References 87
[1] H. Morkoe, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., Vol. 76, 1363 (1994)
[2] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G. Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, MRS Internet J. Nitride Semicon. Res., Vol. 3, 41 (1998)
[3] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and K. T. Ilson, Appl. Phys. Lett., Vol. 62, 1786 (1993)
[4] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, Appl. Phys. Lett., Vol. 65, 1121 (1994)
[5] M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J. Burm, W. Schaff, and L. F. Eastman, Electron. Lett., Vol. 32, 357 (1996)
[6] E. Fred Schubert, “Light-Emitting Diodes”, (Cambridge University Press, 2003)
[7] S. Nakamura, S. Pearton, and G. Fasol, “The Blue Laser Diode”, (Springer Heidelberg,c2000)
[8] S. Strite, M. E. Lin, and H. Morkoc, Thin Solid Films, Vol. 231, 197 (1993)
[9] R. F. Davis, Proc. IEEE , Vol. 5, 702 (1991)
[10] Bernard Gil, Group III Nitride Semiconductor Compounds (Oxford, New York, 1998)
[11] B. Tabbert, C. Hicks, E. Bartley, H. Wu, R. Metzler, and A. O. Goushcha, SPIE., Vol. 5726, 10 (2005)
[12] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C.S. Chang, IEEE Journal of Quantum Electronics, Vol. 39, 681 (2003)
[13] S. S. Liu, P. W. Li, W. J. Lin, Materials Science and Engineering, B 122, 196-200 (2005)
[14] Jun Ohsawa, Takahiro Kozawa, Osamu Ishiguro, and Hiroshi Itoh, Jpn. J. Appl. Phys., Vol. 45, L435 (2006)
[15] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett., Vol. 72, 542 (1998)
[16] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Appl. Phys. Lett., Vol. 72, 211 (1998).
[17] D. S. Wuu, R. H. Horng, W. H. Tseng, W. T. Lin, C. Y. Kung, J. Crystal Growth, Vol. 220, 235 (2000).
[18] D. Byun, G. Kirn, D. Lira, D. Lee, I. H. Choi, D. Park, D. W. Kum, Thin Solid Films, Vol. 289, 256 (1996).
[19] K. Uchida, K. Nishida, M. Kondo, H. Munekata, J. Crystal Growth, Vol. 189/190, 270 (1998).
[20] T. Kachi, K. Tomita, K. Itoh, H. Tadano, Appl. Phys. Lett., Vol. 72, 704 (1998).
[21] T. Wang, Y. Morishima, N. Naoi, S. Sakai, J. Crystal Growth, Vol. 213, 188 (2000).

[22] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts,
(Clarendon Press, Oxford, 1998)
[23] S. M. Sze, Semiconductor Device Physics and Technology, 160
(1985)
[24] S. M. Sze, Semiconductor Device Physics and Technology, 278
(1985)
[25] S. M. Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics, Vol. 14, 1209 (1971)
[26] H. Norde, J. Appl. Phys., Vol. 16, 444 (1996)
[27] S.K. Cheung, N.W. Cheung, Appl. Phys. Lett., Vol. 49, 85 (1986)
[28] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C.Campell, J.,Appl. Phys. Lett., Vol. 83, 6148 (1998)
[29] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001)
[30] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1 Vol. 38, 3976 (1999).
[31] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.
Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., Vol. 70, 1417 (1997).
[32] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.
Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., Vol. 72, 211 (1998).
[33] T. Kachi, K. Tomita, K. Itoh, and H. Trando, Appl. Phys. Lett., Vol. 72, 704 (1998).
[34] S. Sakai, T. Wang, Y. Morishima, and N. Naoi, J. Cryst. Growth, Vol. 221, 334 (2000).
[35] C. H. Kuo, S. J. Chang, Y. K. Su, C. K. Wang, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. M. Tsai, and C. C. Lin, Solid-State Electron., Vol. 47, 2019 (2003).
[36] S. C. Wei, Y. K. Su, S. J. Chang, Shi-Ming Chen, and Wen-Liang Li, IEEE Trans. Electron Devices, Vol. 52, 1104 (2005).
[37] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, and J. S. Speck, Appl. Phys. Lett., Vol. 68, 643 (1996).
[38] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001).
[39] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, Electron. Lett., Vol. 36, 1581 (2000).
[40] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett., Vol. 72, 211 (1998).
[41] K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo and T. Taguchi, Phys. Stat. Sol. (a), Vol. 188, 121 (2001).
[42] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, Solid State Electron., Vol. 47, 1539 (2003).
[43] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, IEEE Photon. Technol. Lett., Vol. 17, 288 (2005).
[44] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, IEEE J. Quan. Electron., Vol. 39, 1439 (2003)
[45] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, and J. S. Speck, Appl. Phys. Lett. Vol. 68, 643 (1996).
[46] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001).
[47] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, Electron. Lett., Vol. 36, 1581 (2000).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊