跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃仲宇
研究生(外文):Jhong-Yu Huang
論文名稱:以氧化鋅為主之透明薄膜電晶體及光檢測器之特性探討
論文名稱(外文):The investigation of ZnO based transparent thin film transistor and photodetector
指導教授:陳志方張守進張守進引用關係
指導教授(外文):Jong-Fang ChenShoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:100
中文關鍵詞:蕭特基二極體薄膜電晶體氧化鋅光檢測器
外文關鍵詞:thin film transistorZnOznic oxidephotodetectorPDSchottky diodeTFT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅為近年受到高度關注並投入大量研究的材料,材料本身擁有多項優點,包含了其寬能隙(~3.37eV)及大的激子鍵結能(60meV),加上在熱穩定性上及化學穩定性上都有相當不錯的表現,所以我們也利用氧化鋅做為我們元件之主要材料並進一步進行探討!
本論文研究可分為四部分,第一部分主要是對於使用濺鍍方式成長之氧化鋅進行物性上之探討,透過X ray 繞射儀了解其結晶性,並進行霍爾量測測量出在不同條件及不同溫度之熱退火情況下的濃度、載子遷移率以及電阻率!並且對磊晶完成後之薄膜進行AFM之掃描,也了解到成長薄膜之表面相當平坦。
第二部分則是針對以氧化鋅為主之金半金光檢測器,使用電極包括鎳/金、銦錫氧化物以及氮化釱。使用HP-4155機台以及氙燈系統進行光、暗電流及光響應之量測,並透過計算,列出不同熱退火情況、不同之電極之rejection ratio。再就針對「高透明」元件,對完成之元件做元件穿透度之量測。
第三部分是以透明薄膜電晶體為主,主要以銦錫氧化物為元件之閘極電極,採用的是閘極電極在底部之結構。而不同之比較為源/汲極分別採用銦錫氧化物以及鈦/鋁/鈦/金做為電極。經過HP-4155電特性之量測之後,發現兩元件皆有電晶體之工作特性,但在元件進入飽和區之前之電流特性有一高凸如同位障之表現,這個問題在熱退火之後有明顯受到改善,並且發現在三極管區之電特性其圖形更佳的線性許多!而元件之電流大小大約在毫安或百微安培之數量級。其臨限電壓則分別為2.47.V及3.33V。
第四部分將對於以氮化鈦為蕭特基接面,鈦/鋁/鈦/金為歐姆接觸之蕭特基二極體為探討主題,藉由電流之量測,分別使用熱離子放射方法、Norde model、以及H(J)等三種方法分別計算出在不同溫度之下之蕭特基能障大小,並經由結果發現,蕭特基能障大小會隨著溫度之提升而下降!
ZnO is a popular material in recently years, we can easily find out many papers about it’s material and devices research. Because of it’s large band gap (3.37eV) and exciton binding energy (60meV).We use it as our channel layer to fabricate our devices.
The thesis is made up of four parts, in the first part, it’s about the material study. My samples were grown by sputtering system, by using X ray diffraction to understand our sample quality and the align direction of lattices. We can find out the carrier concentration was increased as the annealing temperature increased from Hall measurement results . The resistivity is decreased as the annealing temperature increased. The mobility is about 2.8 cm 2/V-s after annealing. And the thin film roughness is from 3 to 15nm.
The second thesis is metal – semiconductor – metal photodector. Ni/Au , ITO, and TiN are deposited as the MSM electrodes. The photo / dark current were measured by HP- 4155 and 250W Xe lamp. We also measured the responsivity and from the results calculated the rejection ratio. The maximum rejection are : Ni/Au PD ~650 ; ITO PD ~181 ; TiN PD ~166 . The transmittance of devices are measured, it’s highly transparent in visible wavelength ( > 80% ).
The third part study is focused on ZnO thin film transistors. ITO was deposited as the gate, source, and drain electrode of Sample 1. In Sample 2, we deposited different source and drain electrode, Ti/Al/Ti/Au were used. From I-V curve, we found Sample1 and Sample2 at Vg = 7V , the Ids are about 1mA and 0.12mA. We found there was an overshoot at the onset of saturation. This phenomenon was reduced after annealing, and the I-V curve became more linear in the triode region. The threshold voltage was gotten from Ids1/2 – Vgs curve. ( Sample 1 ~2.47V , Sample2 ~3.33V ).
In the last section, it’s the study of Schottky diode. The Ti/Al/Ti/Au (20/60/20/50nm) ohmic contact were deposited by e beam onto the ZnO layer, and sample were annealed at 500℃ for 1min. The Schottky contact, TiN (70nm) were then patterned by photolithography and lift-off.. After TiN deposited, the samples were annealed under N2 and O2 ambient for 3 mins. The I-V characteristics were measured, and use different methods to define the Schottky barrier height. Thermionic emission method, Norde model, and H ( J ) method, there are three methods to calculate the Schottky barrier height. The I-V curve trends to rise when the measurement temperature rises. The TiN and ZnO interface performs good Schottky contact after annealing, the interface might grow a thin TiO2 layer. We also find the Schottky barrier height of O2 annealed is larger than N2 annealed. That might because the O2 ambient made the TiN surface become a thin TiO2 layer, and the Schottky barrier height gets higher. At room temperature the Schottky barrier height of N2 and O2 anneal are about 0.77 to 0.87 and 0.95 to 0.97. The photo / dark relationship is measured, sample N2 annealed is about one half orders while sample O2 annealed is more than two orders.
Chapter 1 Introduction 1
1-1 Background 1
1-2 Organization 5

Chapter 2 Fabrication systems and measurement systems 7
2-1 Grow ZnO films by RF - puttering system 7
2-2 Atomic Force Microscope System 8
2-3 Hall measurement 9
2-4 X ray diffraction 10
2-5 The responsivity measurement systems 10

Chapter 3 The Analyses of Fabricated Thin Film 15
3-1 Thin film growth 15
3-2 X ray diffraction results 16
3-3 Hall Measurement 16
3-4 Atomic Force Microscope 17

Chapter 4 The Fabrication and Characteristics of ZnO MSM Photodetectors 22
4-1 Introduction 22
4-2 The carrier transport mechanisms of metal and semiconductor 24
4-3 The Fabrication of ZnO MSM Photodetectors 24
4-4 The characteristics of the MSM photodetectors 27
4-5 The Responsivity and Rejection ratios of MSM Photodetectors 29
4-7 The Transmittance of Devices 30
4-8 Summary of MSM PD 31

Chapter 5 The Fabrication and Characteristics of ZnO Bottom Gate Thin Film Transistor 44
5-1 Introduction 44
5-2 The Fabrication of Transparent Thin Film Transistors 45
5-3 The electrical properties of the TTFTs 46
5-4 TFT Device Transmittance 49
5-5 The Summary of Thin Film Transistor 49

Chapter 6 TiN/ZnO Schottky Diode 58
6-1 Introduction 58
6-2 The Basic Mechanism of Schottky Contact 58
6-3 The Current Transport Mechanisms 59
6-4 The Calculated method of Schottky barrier height 60
6-4-1 Thermionic emission model 60
6-4-2 H ( J ) Method 60
6-4-3 Norde Model 61
6-5 The TiN Schottky Diode Fabrication 62
6-6 Schottky Barrier Height Calculation 64
6-6-1 Use thermionic emission model to calculate Schottky barrier height 64
6-6-2 Use Norde model to calculate Schottky barrier height 65
6-6-3 Use H (J) method to calculate Schottky barrier height 66
6-7 Summary of Schottky Diode calculation 71

Chapter 7 Conclusions and Future Works 91
7-1 Conclusions 91
7-1 Future Works 93

Reference 94
[1] Toshiyuki Nakamura, Yasusei Yamada, Takeshi Kusumori, and Hideki Minoura, Thin Solid Films, 411, pp. 60-64 (2002)
[2] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
[3]See from the website : http://ncsr.csci-va.com/materials/zno.asp
[4] D. W. Palmer, http://www.semiconductors.co.uk, 2002.06
[5] H. M. Cheng, K. F. Lin, and H. C. Hsu, J. Phys. Chem. B 109, pp. 18385-18389 (2005)
[6] Q.T. Wang, G. Z. Wang, Mater. Lett. 59, pp. 1378-1382 (2005)
[7]R.K. Watts, Vossen and W. Kern, eds. Thin Film processes, Academic , New York, 1978, pp131 -174.
[8] C.Y. Chang and S.M.Sze, ULSI technology, p380.
[9] J.L. Vossen, J.J.Cuomo, Thin Film Processes, p24, 1978.
[10]S.I. Shah, Handbook of Thin Film Process Technology P.A3.0.1
[11]S.M. Sze , VLSI Technology, p387.
[12]M. Razeghi and A. Rogalski, J,Appl,Phys. Vol. 79, pp.7473- 7044, 1996.
[13]C.H.Chen, S.J. Chang , Y.K.Su, G.C.Chi, J.Y.Chi, C.A.Chang, J.K. Sheu and J.F.Chen, IEEE photon. Technol. Lett. Vol.13, pp. 848-850, 2001
[14]D.V.Kuksenkov, H.Temkin, A. Osinsky, R.Gaska and M.A. Khan, J.Appl.Phys, vol. 83,pp 2142-2146, 1998.
[15]S.J. Chang, T.K. Lin, Y.K. Su, Y.Z. Chiou, C.K. Wang, S.P. Chang, C.M. Chang, J.J.Tang and B.R. Huang, Material Science and Engineering B.,vol.127, pp. 164-168, 2006.
[16]T.M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J. Appl. Phys., vol 96, pp. 7036 – 7044, 2004.
[17]H. Kato, M. Sano, K.Miyanoto and T. Yaom Jpn .J. Appl. Phys., vol.42, pp L1002 – L1005, 2003.
[18]Y.I.Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev and D.M. Bagnall, Appl. Phys. Lett., vol.83, pp.4719-4721, 2003.
[19]S.J. Young, L.W.Ji, S.J,Chang and Y.K. Su, J. Crystal Growth, vol. 293, pp. 43-47, 2006.
[20]A. Mang, K. Reimann and St. Rubenacke, Solid Sttate Commun, vol.94,pp.251-254, 1995.
[21]A.Setiawan, K. Reimann and St. Rubenacke, Solid State Commun., vol.94, pp 251-254,1995.
[22]E.M. Kaidashev, M.Lorenz, H.von Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, G. Benndorf, C.Bundesmann, H.Hochmuth and M. Grundmann, Appl. Physi. Lett., vol. 82.pp. 3901-3903, 2003.
[23]D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoc, Solid State Commun, vol. 101, pp. 643-646, 1997.
[24]H.J.Ko, Y.F.Chen, S.K. Hong and T.Yao, J. Crystal Growth, vol. 209, pp. 816-821, 2000.
[25]A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga and H. J. Ko, J. Appl. Phys., vol. 96, pp. 3763-3768, 2004.
[26]E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Appl. Physi. Lett., vol. 82, pp. 3901-3903, 2003.
[27]D. C. Reynolds, D. C. Look, B. Jogai, H. Morkoc, Solid State Commun., vol. 101, pp. 643-646, 1997.
[28]H. J. Ko, Y. F. Chen, S. K. Hong and T. Yao, J. Crystal Growth, vol. 209, pp. 816-821, 2000.
[29]S.M. Sze, “Physics of Semiconductor Devices, 2nd. Ed.”, Wiley, New York, 225 (1981).
[30]F.A. Padovani and R. Stratton, Solid-State Electron, Vol. 9, 695 (1966).
[31] C.R. Crowell and V.L. Rideout, Solid-State Electron, Vol. 12, 89 (1969).
[32]V.L. Rideout, Solid-State Electron, Vol. 18, 541 (1975).
[33]J.H. Kim, H.T.Griern, R. A. Friedman, E.Y. Chan and S. Ray: IEEE Photonics Technol. Lett. 4 (1992)1241.
[34]E.Fortunato, P.Barquinha, A.Pimentel, A.Goncalves, A.Marques, L.Pereira, and R.Martins, Adv. Mater. (Weinheim, Ger.) 17, 590 (2005).
[35]H.H. Hsieh and C.C. Wu, Appl. Phys. Lett. 89, 041109 (2006).
[36]R. E. Presley, D. Hong, H. Q. Chiang, C. M. Hung, R. L. Hoffman,. and J. F. Wager, Sol. Stat. Elec. 50, 500 (2006).
[37]H. Hosono, M. Yasukawa, and H. Kawazoe, J. Non-Cryst. Solids 203, 334 1996
[38]R. Martins, P. Barquinha, A. Pimentel, L. Pereira, E. Fortunato, Phys. Stat.Sol. (a) 202 (9) (2005) R95
[39]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano,H. Hosono, Nature 432, 488 (2004).
[40]K. Nomura, H. Ohta, T. Kamiya, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys., Part 1 45, 4303 2006
[41]D.Hong, H.Q.Chiang, R.E.Presley, N.L.Dehuff, J.P.Bender, C.H.Park, J.F.Wager, and D.A.Keszler, Thin Solid Films 515, 2717 (2006).
[42]B.Yaglioglu, H.Y.Yeom, R.Beresford, and D.C.Paine, “High-mobility ... Lett. 89, 062103 (2006).
[43]Y. Kuo, Thin film Transistors: Material and Processes (Kluwer Academic, New York, 2004) vol. 1, p 6.
[44]T. Sameshima, J. Non-Cryst. Solids 227-230, 1196 (1998).
[45]Y. Ohya, T. Niwa, T. Ban, Y. Takahashi, Jpn. J. Appl. Phys, Part 1 vol. 40, pp. 297, 2001
[46]S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, J. Appl. Phys, Vol. 93, pp. 1624, 2003
[47]R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett. 82, 733 (2003)
[48]P. F. Garcia, R. S. McLean, M. H. Reilly, and G. Nunes, Jr., Appl. Phys. Lett. 82, 1117 (2003)

[49]E.Fortunato, P.M. C.Barquinha, A.M. C.B. G.Pimentel, A.M. F.Gonçalves, A.J. S.Marques, ... and R.F. P.Martins, Adv. Mater. (Weinheim, Ger.) 17, 590 (2005)
[50]J. Nishii, F. M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohamki, Ohkubo, Transparent ZnO Channels”, Jpn. J. Appl. Phys. , Part 2 2003, 42, L347.
[51] H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono, Appl. Phys. Lett. 77, 475 (2000).
[52]J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, Appl. Phys. Lett. 78, 3842 (2001).
[53]A. A. Iliadis, R. D. Vispute, T. Venkatesan, and K. A. Jones, Thin Solid Films, 478, 402 (2002).
[54]A. Inumpudi, A. A. Iliadis, S. Krishnamoorthy, S. Choopun, R. D. Vispute, and T. Venkatesan, Solid-State Electron. 46, 1665 (2002).
[55]H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, Appl. Phys. Lett. 77, 1647 (2000).
[56]H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, J. Electrochem. Soc. 148, G114 (2001).
[57]J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, Appl. Phys. Lett. 78, 3842 (2001).
[58]H. Sheng, N. W. Emanetoglu, S. Muthukumar, S. Feng, and Y. Lu, J. Electron. Mater. 31, 811 (2002).
[59]H. Sheng, N. W. Emanetoglu, S. Muthukumar, B. V. Yakshinskiy, S. Feng, and Y. Lu, J. Electron. Mater. 32, 935 (2003).
[60]H.-K. Kim, K.-K. Kim, S.-J. Park, T.-Y. Seong, and I. Adesida, J. Appl. Phys. 94, 4225 (2003).
[61]S. Y. Kim, H. W. Jang, J. K. Kim, C. M. Jeon, W. I. Park, G. C. Yi, and J.-L. Lee, J. Electron. Mater. 31, 868 (2002).
[62]H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 12, 25 March (2002).
[63]C. A. Mead, Phys. Lett. 18, 218 (1965).
[64]R. C. Neville and C. A. Mead, J. Appl. Phys. 41, 3795 (1970).
[65]J. C. Simpson and F. Cordaro, J. Appl. Phys. 63, 1781 (1988).
[66]N. Ohashi, J. Tanaka, T. Ohgaki, H. Haneda, M. Ozawa, and T. Tsurumi, J. Mater. Res. 17, 1529 (2002).
[67]H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).
[68]F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, and H. A. van Laarhoven, Appl. Phys. Lett. 79, 3074 (2001).
[69]B. J. Coppa, R. F. Davis, and R. J. Nemanich, Appl. Phys. Lett. 82, 400 (2003).
[70]H. Sheng, S. Muthulumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).
[71]Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater. 29, 69 (2000).
[72]Marvin L. Cohen, J. Vac. Sci. Technol. 16, (1979)
[73]Neamen, “Semiconductor Physics and Devices”,McGRAW Hill (2003)
[74]E. H. Rhoderick, and R. H. Williams, Oxford Science Publication,(1988).
[75]S.K Cheung and N. W. Cheung, Appl. Aphys. Lett. 49, (1986).
[76] H. Norde, J. Appl. Phys. 50, (1979).
[77]K. E. Bohlin, J. Appl. Phys. 60, (1986).
[78]J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, Appl. Phys. Lett. 72, (1998).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊