跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張若蘋
研究生(外文):Ruo-Ping Chang
論文名稱:鉭/氮化鉭阻障特性及基板孔洞密度的影響之研究
論文名稱(外文):A Study of Low k Material Porosity Effects on Ta/TaN Diffusion Barrier and Its Thermal Stability
指導教授:彭洞清
指導教授(外文):Dung-Ching Perng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:47
中文關鍵詞:銅擴散電阻-電容遲滯效應黏滯力鉭/氮化鉭阻障層孔洞密度
外文關鍵詞:adhesionTa/TaN barrierRC delayCu diffusionporosity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
當ULSI不斷縮小,電阻-電容時間遲滯效應成為後段內連線中提升元件效能的關鍵因素。IC業者使用銅作為連線金屬以及low k材料作為層間介電質。愈低的k值有愈低的電阻-電容時間遲滯效應。另外,需要擴散阻障層來阻擋銅的擴散。因此,多孔性極低k值(ULK)材料上的擴散阻障層的研究是很重要的。鉭對銅有很強的黏滯力如同氮化鉭對二氧化矽有很棒的熱穩定度。所以,鉭/氮化鉭雙層結構被成功的整合進入銅內連線製程。
在本篇論文中,探討沉積在多孔性low k材料(SiOC:H)上的以鉭為基礎的擴散阻障層特性。使用三種不同的low k孔洞密度來研究其對阻障層造成的影響。研究與評估20 nm鉭/氮化鉭以及10 nm氮化鉭阻障層既有的能力是否能延伸至未來的世代。XRD被使用來鑑定退火後相位的形成。使用SEM來觀察退火後樣品表面的形貌、TEM被用來探討界面變化、以及藉由在TEM樣品截面上的EDS線掃描來檢視縱深分布的化學組成。
實驗結果如下:首先,孔洞密度對銅/鉭/氮化鉭/SiOC:H結構上的影響出現在相當高的溫度,例如900 和1000 。除此之外,擴散阻障層從20 nm鉭/氮化鉭降低到10 nm氮化鉭是可行的,因為高達1000 時銅原子不會穿透至多孔性low k材料。最後,當退火到非常高的溫度時,銅和以鉭為基礎的擴散阻障層會產生黏滯力的問題。因此,對於未來的世代而言,提升黏滯力是很重要的研究之ㄧ。
As ultra large scale integrated circuit continual shrinking, RC product of backend interconnect becomes a key dominate factor to device performance. IC manufacturers used Cu as wiring metal and low k materials as interlayer dielectrics. The lower k value obtains the lower RC delay. Moreover, diffusion barriers are required to resist Cu diffusion. Therefore, some investigations about reliable diffusion barriers on porous ultra low k (ULK) materials are essential. Ta has a strong adhesion to Cu and TaN has great thermal stability as well as adheres well to SiO2. Ta/TaN bi-layer has been successfully integrated to the Cu interconnect fabrication process.
In this thesis, tantalum based diffusion barrier properties deposited on porous low k (SiOC:H) were examined. Three different porosities of low k materials were used to study porosity effect on barrier functions. A 20 nm Ta/TaN barrier and a 10 nm TaN barrier were studied and evaluated for their extant-ability for future generations. XRD was used to identify phase formation after annealing. SEM was used to observe post-annealed sample surface, TEM micrograph was taken to examine interface after annealing, and chemical composition depth profiles were obtained by EDS line scan on cross sectional TEM sample.
The experiments result follows: Firstly, the impact of porosities on Cu/Ta/TaN/porous SiOC:H structure appeared at really high temperatures such as 900 and 1000 . In addition, diffusion barrier reduced to 10 nm TaN from 20 nm Ta/TaN is feasible because Cu atoms did not penetrate into porous low k layer even up to 1000 . Finally, adhesion problems between Cu and Ta based diffusion barriers were apparent when annealed at high temperatures. Adhesion improvement process is necessary when implement to future generations.
Abstract (in Chinese) I
Abstract (in English) III
Acknowledgements V
Contents VI
Table captions VIII
Figure captions IX

Chapter 1 Introduction 1
1.1 Overview 1
1.2 RC Delay Effects 3
1.3 Cu / Low k Integration Challenge 5
1.4 About This Thesis 7

Chapter 2 Introduction to Porosity and Diffusion Barrier 8
2.1 Porosity 8
2.1.1 Pore structure 8
2.1.2 Issues for porous low k material 9
2.2 Diffusion Barrier 10
2.2.1 The theory of diffusion 10
2.2.2 The requirement of copper diffusion barrier 11
2.2.3 Properties for Ta/TaN diffusion barrier 12

Chapter 3 Experiment Scheme 16
3.1 Process Equipments 16
3.1.1 Sputter System 16
3.1.2 Annealing System 18
3.2 Analysis Equipments 19
3.2.1 Energy-dispersive X-ray Spectroscopy (EDS) Line Scan 19
3.2.2 Scanning Electron Microscopy (SEM) 20
3.2.3 Transmission Electron Microscopy(TEM) 21
3.2.4 X-ray Diffraction (XRD) 22
3.3 Experiment Procedures 24

Chapter 4 Experiment Results and Discussions 27
4.1 X-ray Diffraction Analysis 27
4.2 The Depth Profiling Analysis 36
4.3 The SEM Observation 39
4.4 The TEM Observation 41

Chapter 5 Conclusions and Future Works 42
5.1 Conclusions 42
5.2 Future Works 43
References 44
[1] Electronics Magazine (35 anniversary), April 19, 1965
[2] Sze, Semiconductor and Device, second edition
[3] C.F. Tsang, C.Y. Li, A. Krishnamoorthy, Y.J. Su, H.Y. Li, L.Y. Wong,
W.H. Li, L.J. Tang, K.Y. Ee, Microelectronics Journal, Volume 35,
Issue 9, September 2004, Pages 693-700
[4] H.S. Nguyen, Z.H. Gan, Zhe Chen, V. Chandrasekar, K. Prasad, S.G. Mhaisalkar, Ning Jiang, Microelectronics and Reliability, Volume 46, Issue 8, August 2006, Pages 1309-1314
[5] W.F.A Besling et al., Microelectron. Eng. 76(2004) 167-174.
[6] Zs. Tökei, Y.-L. Li, G.P. Beyer, Microelectronics And Reliability,
Volume 45, Issues 9-11, September-November 2005, Pages 1436-1442
[7] Ching-Chun Chang, J.S. Chen, Thin Solid Films, Volumes 469-470, 22 December 2004, Pages 309-314
[8] H.S. Nguyen, Z.H. Gan, Zhe Chen, V. Chandrasekar, K. Prasad, S.G. Mhaisalkar, Ning Jiang, Microelectronics and Reliability, Volume 46, Issue 8, August 2006, Pages 1309-1314
[9] V. Jousseaume et al., in: Proceedings of the 2005 International Interconnect Technology Conference (IITC 2005), p. 60-62.
[10] Changsoo Hong, Linda Milor, Microelectronics Reliability, Volume
47, Issues 9-11, September-November 2007, Pages 1478-1482
[11] D. Shamiryan, M.R. Baklanov, P. Lyons, S. Beckx, W. Boullart, K. Maex, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 300, Issues 1-2, 1 June 2007, Pages 111-116
[12] Sang-Soo Hwang and Hee-Chan Lee, Hyun Wook Ro and Do Yeung
Yoon, Young-Chang Joo, Applied Physics Letters 87, 111915 (2005)
[13] Wilfried Puyrenier, Vincent Rouessac, Lucile Broussous, Diane
Rébiscoul, André Ayral, Microporous and Mesoporous
Materials, Volume 106, Issues 1-3, 1 November 2007, Pages 40-48
[14] Paul Shewmon, DIFFUSION IN SOLIDS, second edition
[15] Ching-Chun Chang, J.S. Chen, Thin Solid Films, Volumes
469-470, 22 December 2004, Pages 309-314
[16] R. Hübner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig, Ch.
Wenger, H. -J. Engelmann, Ch. Wenzel, E. Zschech, J. W. Bartha,
Thin Solid Films, Volume 437, Issues 1-2, 1 August 2003, Pages
248-256
[17] Ching-Chun Chang, Shiu-Ko JangJian, and J.S. Chen, Journal of The
Electrochemical Society, 152 (7) G517-G521 (2005)
[18] I. Langmuir, General Electric Rev. 26:731 (1923)
[19]Stephen A. Campbell, “The Science and Engineering of Microelectronic Fabrication” OXFORD
[20] H. Bubert and H. Jenett, “Surface and Thin Film Analysis”
WILEY-VCH
[21]Klaus Wetzig, Claus M. Schneider, “Metal Based Thin Films for Electronics” first edition
[22]黃惠忠…等編著, “奈米材料分析” 滄海書局
[23]汪建民 主編, “材料分析” 中國材料科學學會
[24] R.Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M.Wallace, M.J.
Kim, T.Q. Hurd, Electrochem. Solid-State Lett. 7 (2004) G154
[25] J. Tan, X. Qu, Q. Xie, Y. Zhou, G. Ru, Thin Solid Films 504 (2006)
[26] Ji-cheng Zhou, You-zhen Li, Di-hui Hung, Journal of Materials
Processing Technology, PROTEC-11980; No. of Pages 5
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top