跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王嚴慶
研究生(外文):Yen-Ching Wang
論文名稱:以低溫氮化鎵中間置入層方法製作氮化鎵系列紫外光檢測器及金氧半異質結構場效電晶體之研究
論文名稱(外文):Investigation of GaN-based UV PDs and MOSHFETs Fabricated with a Low Temperature GaN Interlayer
指導教授:張守進張守進引用關係陳志方
指導教授(外文):Shoou-Jinn ChangJone Fang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:95
中文關鍵詞:氮化鎵光檢測器異質場效電晶體差排中間置入層
外文關鍵詞:DislocationGaNHFETPhotodetectorInterlayer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究主軸為以低溫氮化鎵中間置入層方法製作氮化鎵系列紫外光檢測器及金氧半異質結構場效電晶體。本實驗中,使用有機金屬氣相化學沉積系統成長氮化鋁鎵/氮化鎵異質結構。由於氮化鎵系列材料缺少晶格匹配的適當基板,氮化鎵系列材料及其相關元件大多數成長於藍寶石基板上。然而由於氮化鎵系列材料與藍寶石基板之間的晶格常數差異甚大,造成氮化鎵磊晶薄膜內部產生較多的差排缺陷,導致元件有較高的漏電流存在。一般而言,要製備出良好品質的氮化鎵磊晶薄膜必須先成長低溫氮化鎵成核層。亦有文獻提出,低溫氮化鎵中間置入層能抑制差排缺陷竄升至後續成長之氮化鎵磊晶層。因此,我們於氮化鋁鎵/氮化鎵異質結構之氮化鎵通道層中,插入低溫氮化鎵中間置入層結構,以期改善上層氮化鋁鎵/氮化鎵異質結構之磊晶品質。
首先於氮化鋁鎵/氮化鎵磊晶薄膜特性分析方面,我們使用的分析方法包括X射線繞射儀、二次離子質譜儀、原子力顯微鏡、蝕刻凹洞缺陷密度分析與穿透率量測。從材料分析的結果可知以低溫氮化鎵中間置入層方法可有效改善氮化鋁鎵/氮化鎵異質結構之磊晶品質。
藉由上述的結果,我們進一步應用低溫氮化鎵中間置入層結構來製作氮化鎵系列紫外光檢測器與金氧半異質場效電晶體。在光檢測器元件特性分析方面,將低溫中間置入層結構應用於金半金與蕭基能障光檢測器,能達到較低的漏電流、較高的光暗電流比與紫外光對可見光拒斥比、有效抑制元件的內部增益、以及得到較低的雜訊位準與較高的元件檢測度。在異質結構場效電晶體元件特性分析方面,將低溫中間置入層結構應用於金氧半異質場效電晶體,能有效降低閘極的漏電流、達成較佳的夾止及轉導特性與較低的雜訊位準。因此,以低溫氮化鎵中間置入層結構製作氮化鎵系列紫外光檢測器與金氧半異質結構場效電晶體,在不久的未來將可應用於光電積體電路之光接收器端。
The main goal of this research is the fabrication and characterization of GaN-based ultraviolet (UV) photodetectors (PDs) and metal-oxide-semiconductor heterostructure field effect transistors (MOSHFETs) with a low temperature (LT) GaN interlayer. AlGaN/GaN heterostructures used in this experiment were prepared by metal-organic chemical vapor deposition system (MOCVD). Due to the lack of suitable lattice-matched substrates, most of the GaN-based materials and devices were grown on sapphire substrate. However, a large lattice mismatch between GaN and sapphire substrate causes a large amount of threading dislocations (TDs) embedded in the GaN epilayer, leading to extremely high leakage currents. It is known that the LT GaN layer as nucleation layer is necessary to grow high quality GaN epilayer. It is also known that LT GaN interlayer can suppress TDs extending to the subsequently grown high-temperature (HT) GaN epilayers. Therefore, a LT GaN layer was applied as an interlayer in the HT GaN channel layer of the AlGaN/GaN heterostructure.
First, material analyses of AlGaN/GaN heterostructure with a LT GaN interlayer were investigated by X-ray diffractometer (XRD), secondary ion mass spectrometer (SIMS), atomic force microscopy (AFM), etching pit density (EPD) and transmission spectra. It was found that high crystalline quality AlGaN/GaN heterostructure could be achieved with insertion of a LT GaN interlayer.
Based on the aforementioned results, we apply a LT GaN interlayer to the fabrication of GaN-based UV PDs and MOSHFETs. In the part of PDs, we demonstrate metal-semiconductor-metal (MSM) and Schottky barrier PDs by using a LT GaN interlayer with good characteristics, including low dark leakage current, high photo-to-dark current ratio, high UV-to-visible rejection ratio, suppressed internal gain, low noise level and high detectivity. In the part of HFETs, we demonstrate MOSHFETs by using a LT GaN interlayer with high performance, including low gate leakage current, low noise level, good pinch-off and transfer characteristics. Integration of GaN-based UV PDs and MOSHFETs with a LT GaN interlayer will be realized in application to monolithic receiver optoelectronic integrated circuits (receiver OEIC) in the near future.
Abstract (in Chinese) i
Abstract (in English) iii
Acknowledgement v
Contents vii
Table Captions xi
Figure Captions xii
Chapter 1 Introduction
1.1 Motivation 1
1.2 Organization of the Thesis 3
Chapter 2 Background Review, Foundation Theory and Experimental Apparatus
2.1 Crystal Structure of Nitrides 6
2.2 Formation mechanism and effect of threading dislocations on device performance 6
2.2.1 Dislocation Formation 6
2.2.2 Effects of Dislocation on Device 8
2.3 Theory of Metal Semiconductor Contacts 8
2.3.1 Schottky Contacts 8
2.3.2 Ohmic Contacts 11
Chapter 3 Material Characteristics of AlGaN/GaN Heterostructure with a LT Interlayer
3.1 Influence of the LT Interlayer on the Growth Mode and Properties of the Subsequently Epilayer 18
3.2 AlGaN/GaN Heterostructure with a LT GaN Interlayer 19
3.3 Result of Material Analysis 20
3.3.1 XRD Analysis 20
3.3.2 SIMS Profiles 20
3.3.3 AFM Scanning 20
3.3.4 Etching Pit Density 21
3.3.5 Transmission Spectra 21
Chapter 4 GaN-based UV PDs with a LT GaN Interlayer
4.1 Parameters of PDs 32
4.1.1 Quantum Efficiency and Spectral Responsivity 32
4.1.2 Internal Gain 34
4.1.3 Low Frequency Noise Characteristics 35
Part I. Metal-semiconductor-metal (MSM) PDs
4.2 Physics and Theory of MSM PDs 37
4.3 Fabrication Processes of MSM PDs 38
4.3.1 Mesa Definition 38
4.3.2 ITO Electrodes 39
4.3.3 Pad Electrodes 39
4.4 Results and Discussion 40
4.4.1 Current-Voltage (I-V) Characteristics 40
4.4.2 Spectral Response 40
4.4.3 Capacitance-Voltage (C-V) Characteristics 41
4.4.4 Low Frequency Noise Characteristics 43
Part II. Schottky Barrier PDs
4.5 Fabrication Processes of Schottky Barrier PDs 44
4.5.1 Mesa Definition 44
4.5.2 Ohmic Contat Deposition and Annealing 45
4.5.3 Schottky Contact Pad Deposition 45
4.6 Results and Discussion 45
4.6.1 Current-Voltage (I-V) Characteristics 45
4.6.2 Calculation of Schottky Barrier Height 46
4.6.3 Spectral Response 46
4.6.4 Low Frequency Noise Characteristics 46
4.7 Summary 47
Chapter 5 GaN-based MOSHFETs with a LT GaN Interlayer
5.1 Theory of HFETs characteristics 69
5.1.1 Piezoelectric and Spontaneous Polarization 70
5.1.2 Polarity 72
5.2 Fabrication Processes of MOSHFETs 73
5.2.1 Mesa Isolation 73
5.2.2 Source-Drain Definition 73
5.2.3 SiO2 Deposition and Gate Metal Definition 74
5.3 The Characteristics of AlGaN/GaN MOSHFETs 74
5.3.1 Schottky Gate Performance 74
5.3.2 Output and Transfer Characteristics 75
5.3.3 Low Frequency Noise Characteristics 76
5.4 Summary 76
Chapter 6 Conclusions and Future Work
6.1 Conclusions 87
6.2 Future work 87
References 89
Chapter 1
[1] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys., 34, L1332 (1995).
[2] Y. K. Su, G. C. Chi, and J. K. Sheu, Opt. Mater., 14, 205 (2000).
[3] S. Nakamura, M. Senoh, and S. Magahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiooko, and Y. Sugimoto, Jpn. J. Appl. Phys., 35, L74 (1996).
[4] Tom D. Milster, Opt. Eng., 40, 2255 (2001).
[5] Yuichi Sato, Nobuyuki Takahashi, and Susumu Sato, Jpn. J. Appl. Phys., 37, L129 (1998).
[6] Cyril Pernot, Akira Hirano, Motoaki Iwaya, Theeradetch Detchprohm, Hiroshi Amano, and Isamu Akasaki, Jpn. J. Appl. Phys., 39, L387 (2000).
[7] Y. Dikme, M. Fieger, F. Jessen, A. Szymakowski, H. Kalisch, J. F. Woitok, P. van Gemmern, P. Javorka, M. Marso, N. Kaluza, R. H. Jansen, and M. Heuken, Phys. Stat. Sol. (c), 0, 2385 (2003).
[8] I. Ahmad, M. Holtz, N. N. Faleev, H. Temkin, J. Appl. Phys., 95, 1692 (2004)
[9] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog, Nature, 406, 865 (2000).
[10] Ke Xu, Jun Xu, Peizhen Deng, Rongsheng Qiu, Zujie Fang, Phys. Stat. Sol. (a), 176, 589 (1999)
[11] F. Degave, P Ruterana, and G. Nouet, J. Phys.: Condens. Matter, 12, 10307 (2000).
[12]Isamu Akasaki, Hiroshi Amano, Yasuo Koide, Kazumasa Hiramatsu, and Nobuhiko Sawaki, J. Cryst. Growth, 98, 209 (1989).
[13]C. Stampfl, C. G. Van del Valle, Phys. Rev. B, 57, R15052 (1998).
[14]H. Amano, N. Sawaki, and I. Akasaki, Y. Toyoda, Appl. Phys. Lett., 48, 353 (1986).
[15]S. Nakamura, Jpn. J. Appl. Phys., 30, L1705 (1991).
[16]S. D. Lester, F. A. Ponce, M. G. Craford and D. A. Steigerwald, Appl. Phys. Lett., 66, 1249 (1995).
[17]X. J. Ning, F. R. Chien, P. Pirouz, J. W. Yang, and M. A. Khan, J. Mater. Res., 11, 580 (1996).
[18]M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., 37, L316 (1998).
[19]H. Amona,M. Iwaya, T. Kashima, M. Katsuragwa, I. Akasaki, J. Han, S. Hearne, J. A. Floro, E. Chason, and J. Figiel, Jpn. J. Appl. Phys., 37, L1540 (1998).
Chapter 2
[1]J. L. Birman, Phys. Rev., 115, 1493 (1959).
[2]X. J. Ning, F. R. Chien, and P. Pirouz, J. W. Yang, and M. Asif Khan, J. Mater. Res., 11, 580 (1996).
[3]L. Sugiura, J. Appl. Phys., 81, 1633 (1997).
[4]W. T. Read, Jr., Dislocations in Crystals, New York Toronto London (1953).
[5]C. J. Tun, C. H. Kuo, Y. K. Fu, C.W. Kuo, C. J. Pan, G. C. Chi, Appl. Phys. Lett., 90, 212109 (2007).
[6]Zhang A. P., Rowland L. B., Kaminsky E. B., Tilak V., Grande J. C., Teetsov J., Vertiatchikh A., Eastman L. F., Jour. Elec. Mater., 32, 388 (2003).
[7]Cyril Rernot, Akira Hirano, Motoaki Iwaya, Theeradetch Detchprohm, Hiroshi Amano, Jpn. J. Appl. Phys., 38, L487 (1999).
[8]H. Norde, J. Appl. Phys., 50, 5052 (1979).
[9]O. Ambacher, J. Phys. D, 31, 2653 (1998).
[10]Reeves GK, Solid-State Electron., 23, 487 (1980).
Chapter 3
[1]M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Nohn, and S. J. Park, Appl. Phys. Lett., 79, 2713 (2001).
[2]M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano and I. Akasaki, Jpn. J. Appl. Phys., 37, L316 (1998).
[3]R. Kyutt, G. Mosina, M. Shcheglov, L. Sorokin, Phys. Solid State, 48, 1577 (2006).
[4]Jyh-Rong Gong, Su-Fen Tseng, Cheng-Wei Huang, Yu-Li Tsai, Wei-Tsai Liao, Cheng-Liang Wang, Bing-Hong, and Tai-Yuan Lin, Jpn. J. Appl. Phys., 42, 6823 (2003).
[5]M. Hao, S. Mahanty, T. Sugahara, Y. Morishima, H. Takenaka, J. wang, S. Tottori, K. Nishino, Y. Naoi, and S. Sakai, J. Appl. Phys., 85, 6497 (1999).
[6]K. Shiojima, J. M. Woodall, C. J. Eiting, P. A. Grudowski, and R. D. Dupuis, J. Vac. Sci. Technol B, 17 , 2030 (1999).
[7]S. J. Hearne, J. Han, S. R. Lee, J. A. Floro, D. M. Follstaedt, E. Chason, I. S. T. Tsong, Appl. Phys. Lett., 76, 1534 (2000).
[8]J. Han, K. E. Waldrip, S. R. Lee, J. J. Figiel, S. J. Hearne, G. A. Petersen, and S. M. Myers, Appl. Phys. Lett., 78, 67 (2001)
[9]U. Rossow, F. Hitzel, N. Riedel, S. Lahmann, J. Blasing, A. Krost, G. Ade, P. Hinze, A. Hangletiter, J. Cryst. Growth, 248, 528 (2003).
[10]R. Q. Jin, J. P. Liu, J. C. Zhang, H. Yang, J. Cryst. Growth, 268, 35 (2004).
[11]M. Benamara, Z. Liliental-Weber, S. Kellermann, W. Swider, J. Washburn, J. Mazur, E. D. Bourret-Courchesne, J. Cryst. Growth, 218, 447 (2000).
[12]C. McAleese, M. J. Kappers, F. D. G. Rayment, P. Cherns, C. J. Humphreys, J. Cryst. Growth, 272, 475 (2004).
[13]Yu-Li Tsai, Jyh-Rong Gong, Opt. Mater., 27, 425 (2004).
[14]B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapoiek, B. P. Keller, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett., 68, 643 (1996).
[15]M. G. Cheong, K. S. kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, and A. Yoshikawa, Appl. Phys. Lett., 77, 2557 (2000).
[16]K. Shiojima, J. Vac. Sci. Technol. B, 18, 37 (2000).
[17]T. Hino, S. Tomiya, t. Miyajima, K. Yanashima, S. Hashimoto, and M. Lkeda, Appl. Phys. Lett., 76, 3421 (2000).
Chapter 4
[1]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys., 83, 6148 (1998).
[2]xiaoyan Wang, Xiaoliang Wang, Baozhu Wang, Hongling Xiao, Hongxin Liu, Junxi Wang, Yiping Zeng, Jinmin Li, Phys. Stat. Sol. (c), 4, 1613 (2007).
[3]Hao Jiang, Naoyuki Nakata, Guang Yuan Zhao, Hiroyasu Ishikawa, Chun Lin Shao, Takashi Egawa, Takashi Jimbo, and Masayoshi Umeno, Jpn. J. Appl. Phys., 40, L505 (2001).
[4]O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., 79, 1417 (2001).
[5]L. Leung, A. F. Wright, and E. B. Stechel, Appl. Phys. Lett., 74, 2495 (1999).
[6]S. L. Jang, and G. Bosman, J. Appl. Phys., 65, 201 (1989).
[7]S. Kugler, K. Steiner, U. Seiler, K. Heime and E. Kuphal, Appl. Phys. Lett., 52 , 111 (1988).
[8]M. Misra, D. Doppalapudi, A. V. Sampath, T. D. Moustakas, MRS Internet J. Nitride Semicond. Res., 4S1, G7.8 (1999).
[9]K. H. Lundberg, Noise sources in bulk CMOS (2002).
[10]Martin von Haartman, Low-frequwncy noise characterization, evalution and modeling of advanced Si- and SiGe-based CMOS transistors, Kungliga Tekniska Hogskolan (KTH), 2 (2006).
[11]N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, E. Ozbay, Phys. Stat. Sol. (c), 0, 2314 (2003).
[12]Yan-Kuin, Fuh-Shyang, and Min-Hong Chen, Jpn. J. Appl. Phys., 42, 2257 (2003).
[13]Jianliang Li, W. R. Donaldson, T. Y. Hsiang, IEEE Photonics Technol. Lett., 15, 1141 (2003).
[14]Chang, S. J., Lee, M. L., Sheu, J. K., Lai, W. C., Su, Y. K., Chang, C. S., Kao, C. J., Chi, G. C., Tsai, J. M., IEEE Electron Device Lett., 24, 212 (2003)
[15]Dong-Wook Kim, Kyong-Seok Chea, Yong-Jo Park, In-Hwan Lee, and Cheul-Ro Lee, Phys. Stat. Sol. (a), 201, 2686 (2004).
[16]In-Seok Seo, In-Hwan Lee, Yong-Jo Park, Cheul-Ro Lee, J. Cryst. Growth, 252, 51 (2003).
[17]P. Kozodoy, J. P. Lbbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett., 73, 975 (1998).
[18]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys., 83, 6148 (1998).
[19]E. J. Miller, X. Z. Dang, and E. T. Yu, J. Appl. Phys., 263, 176 (2004).
[20]S. M. Sze, D. J. Coleman, JR. And A. Loya, Solid-State Electron., 14, 1209 (1971).
[21]P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, New Jersey (1997).
[22]W. Kern, RCA Rev., 39, 278 (1978).
[23]W. Kerm, J. Electronchem. Soc., 137, 1887 (1990).
[24]T. Ohmi, J. Electronchem. Soc., 143, 1957 (1996).
[25]O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., 79, 1417 (2001).
[26]J. C. Carrano, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett., 70, 1992 (1997).
[27]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys., 83, 6148 (1998).
[28]E. G. Brazel, M. A. Chin, and V. Narayanamurti, Appl. Phys. Lett., 74, 2367 (1999).
[29]Hao Jiang, Takashi Egawa, Hiroyasu Ishikawa, Chunlin Shao and Takashi Jimbo, Jpn. J. Appl. Phys., 43, L683 (2004).
[30]S. Roy Morrison, J. Appl. Phys., 72, 4104 (1992).
[31]O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., 80, 347 (2002).
[32]M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R. Bhattarai, Appl. Phys. Lett., 63, 2455 (1993).
[33]G. Y. Wu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoc, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, Appl. Phys. Lett.,71 ,2154 (1997).
[34]E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sanchez, and M. Razeghi, Appl. Phys. Lett., 74, 1171 (1999).
[35]E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Minoz, Appl. Phys. Lett., 73, 2146 (1998).
[36]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys., 83, 6148 (1998).
[37]Yi Zhou, Claude Ahyi, Chin-Che Tin, John Williams, and Minseo Park, Dong-Joo Kim, An-Jen Cheng, Dake Wang, Andrew Hanser, Edward A. Preble, N. Mark Williams, and Keith Evans, Appl. Phys. Lett., 90, 121118 (2007).
[38]J. K. Kim, H. W. Jang, C. M. Jeon, and J. Lee, Appl. Phys. Lett., 81, 4655 (2002).
[39]M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, S. J. Chang, C. J. Kao, C. J. Tun, M. G. Chen, W. H. Chang, G. C. Chi, and J. M. Tsai, J. Appl. Phys., 94, 1753 (2003).
[40]J. W. P. Hsu and M. J. Manfra, Appl. Phys. Lett., 81, 79 (2002).
[41]J. E. Northrup, Appl. Phys. Lett., 78, 2288 (2001).
[42]H. Zhang, E. J. Miller, and E. T. Yu, J. Appl. Phys., 99, 023703 (2006).
[43]Roberto M., Cibils and Roman H., Buitrago, J. Appl. Phys., 58, 15 (1985).
[44]Cao X A, Stokes E B, Sandvik P M, LeBoeuf S F, Kretchmer J and Walker D, IEEE. Device Lett., 23, 535 (2002)
Chapter 5
[1]S. Mizuno, Y. Ohno, S. Kishimoto, and T. Mizutani, Jpn. J. Appl. Phys., 41, 5125 (2002).
[2]M. S. Shur, GaAs Devices and Circuits, Plenum, New York (1987).
[3]M. A. Hhan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, IEEE Electron Device Lett., 21, 63 (2000).
[4]X. Hu, A. Koudymov, G. Simin, J. Yang, M. A. Khan, A. Tarakji, M. S. Shur, and R. Gaska, Appl. Phys. Lett., 79, 2832 (2001).
[5]G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, Appl. Phys. Lett., 68, 2541 (1996).
[6]E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, Appl. Phys. Lett., 71, 2794 (1997).
[7]F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B, 56, R10024 (1997).
[8]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, J. Appl. Phys., 87, 334 (2000).
[9]T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys., 54, 437 (1982).
[10]S. Karmalkar, D. M. Sathaiya, and M. S. Shur, Appl. Phys. Lett., 82, 3976 (2003).
[11]E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, Appl. Phys. Lett., 84, 535 (2004).
[12]Steven C. Binari, Kiki Ikossi, Jason A. Roussos, Walter Kruppa, Doewon Park, Harry B. Dietrich, Daniel D. Koleske, Alma E. Wickenden, and Richard L. Henry, IEEE Tran. Electron Dev., 48, 465 (2001).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊