跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭安廷
研究生(外文):An-Ting Cheng
論文名稱:以有機金屬氣相磊晶技術成長氮化鎵系列材料與發光二極體之結構開發
論文名稱(外文):Structural Development of GaN-Based Materials and Light Emitting Diodes Grown by Metalorganic Vapor Phase Epitaxy Technique
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:216
中文關鍵詞:鋁酸鋰有機金屬氣相磊晶發光二極體分散式布拉格反射鏡
外文關鍵詞:distributed Bragg reflectorLiAlO2light-emitting diodemetalorganic vapor phase epitaxy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,使用有機金屬氣相磊晶技術展現氮化鎵系列材料與元件的特性改善。爲了增進人類生活所需求之發光二極體的光強度,提出了一些成長方法並加以討論。展現AlInN/GaN 超晶格成長法以顯著地降低AlGaN 層中之缺陷。爲了增進近紫外光與紫光InGaN/GaN 多重量子井之光強度,採用AlInN 披覆層結構以改善主動區中的光激發載子侷限。此外,發現AlInN 披覆層具應力釋放作用,可以降低InGaN 量子井層中的壓縮應力。由於減弱的量子侷限史塔克效應,因此能實現較高的內部量子效率。改善近紫外光多重量子井之光強度的另一種方法是後成長回火處理。由於改善量子井與能障的品質,所以能實現312 % 的光強度提升。此外,藉由採用漸進式AlGaN 中間層與AlN/GaN 超晶格,成功地成長出無裂紋氮化物分散式布拉格反射鏡。在波長430 nm 的最大反射率達到79.2 %,並具有42 nm 的禁帶頻寬。與傳統發光二極體比較,使用AlInN 披覆層之InGaN/GaN 多重量子井發光二極體特性顯示出在20 mA 時10.4 % 的強度改善。成長在鋁酸鋰基板上之InGaN/GaN 多重量子井發光二極體的光特性也加以探討。光激螢光強度隨著電極化向量垂直c軸而增加。此外,室溫下此發光二極體樣品的極化程度是51.3 %。
In this dissertation, the improved properties of GaN-based materials and devices are demonstrated by metalorganic vapor phase epitaxy (MOVPE) technique. To enhance the light intensity of light emitting diode (LED) required for human life, some growth methods are proposed and discussed. The AlInN/GaN superlattices (SLs) growth is demonstrated to significantly reduce the dislocation of AlGaN layers. For enhanced light intensity of near ultraviolet (UV) and violet InGaN/GaN multiple-quantum-wells (MQWs), the AlInN cladding layer structures are used to improve the confinement of photogenerated carriers in the active region. Besides, it is found that AlInN cladding layers act as strain-relief layers which can reduce the compressive strain in InGaN well layers. As a result, higher internal quantum efficiency is achieved due to the lower strain-induced quantum confined Stark effect (QCSE). Another way for improving the light intensity of near UV MQW is the post-growth annealing treatment. The light intensity improvement of 312 % is achieved due to the improved QW and barrier quality. In addition, crack-free nitride distributed Bragg reflectors (DBRs) are successfully grown by using graded AlGaN interlayers and AlN/GaN SLs. The maximum reflectivity of 79.2 % at the wavelength of 430 nm is achieved with the stop band width of 42 nm. For the characteristics of InGaN/GaN MQW LED, it shows a 10.4 % intensity improvement at 20 mA after using AlInN cladding layers as compared to conventional LED. The optical properties of InGaN/GaN MQW LED grown on LiAlO2 (LAO) substrate are also investigated. The photoluminescence (PL) intensity increases as the electric polarization vector is perpendicular to the c-axis. Furthermore, the polarization degree of this LED sample is 51.3 % at room temperature.
Abstract (in Chinese) ………………………………………………….……..………iii
Abstract (in English) …………………………………………………………..……..v
Acknowledgements ………………………………………………………………….vii
Contents.……………………………………………………………………………..viii
Table Captions ………………………………………………………………………..xi
Figure Captions …………………………………………………………………......xiii
CHAPTER 1 Introduction
1.1 Background of Researches on GaN-Based Materials and Devices 1
1.2 MOVPE Technology for GaN-Based Materials 8
1.3 Overview of This Dissertation 14
CHAPTER 2 MOVPE Growth of GaN-Based Materials on Sapphire Substrates
2.1 Introduction 28
2.2 GaN Bulk and Doping 32
2.3 AlGaN/GaN Heterostructures 35
2.4 Lattice-Matched AlInN/GaN Heterostructures 38
2.5 AlGaN/GaN Superlattices with Enhanced Hole Concentration 44
2.6 AlInN/GaN Superlattices for Reducing Dislocation Density 46
2.7 Summary 48
CHAPTER 3 Enhanced PL Intensity of InGaN/GaN MQW Structures
3.1 Introduction 80
3.2 Effects of Precursors and Growth Temperatures 85
3.3 Near UV/Violet InGaN/GaN MQWs with AlInN Cladding Layers 92
3.4 PL Intensity Improvement of Near UV InGaN/GaN MQWs by Post-Growth Annealing Treatment 94
3.5 Summary 96
CHAPTER 4 Crack-Free Nitride DBRs Grown by MOVPE
4.1 Introduction 117
4.2 AlGaN/GaN DBRs Grown on Sapphire Substrates 121
4.3 AlGaN/GaN DBRs with Graded AlGaN Interlayers 123
4.4 Nitride DBRs with AlN/GaN Superlattices 125
4.5 Summary 127
CHAPTER 5 Characteristics of InGaN/GaN MQW LEDs Grown by MOVPE
5.1 Introduction 145
5.2 InGaN/GaN MQW LEDs with Mg-doped AlInN Insertion Layers 149
5.3 InGaN/GaN MQW LEDs with AlInN Cladding Structures 152
5.4 InGaN/GaN MQW LEDs with Roughened InN Structures 154
5.5 Summary 157
CHAPTER 6 MOVPE Growth of GaN-Based Materials on LiAlO2 Substrates
6.1 Introduction 180
6.2 M-Plane GaN Growth 183
6.3 Optical Properties of InGaN/GaN MQWs on LiAlO2 Substrates 185
6.4 Characteristics of M-Plane InGaN/GaN MQW LEDs 187
6.5 Summary 189
CHAPTER 7 Conclusions and Future Work
7.1 Conclusions 208
7.2 Future Work 211
Publication List 213
Vita 216
Chapter 1
[1] G. Landwehr, A. Waag, F. Fischer, H.-J. Lugauer, and K. Schüll, “Blue emitting heterostructure laser diodes,” Physica E, Vol. 3, pp. 158-168, 1998.
[2] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys., Vol. 86, pp. 1-78, 1999.
[3] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, Vol. 406, pp. 865-868, 2000.
[4] M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, “Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett., Vol. 91, pp. 231107-1-231107-3, 2007.
[5] A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., Vol. 36, pp. L899-L902, 1997.
[6] C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, G. M. Peake, and L. Griego, “Low-dislocation-density GaN from a single growth on a textured substrate,” Appl. Phys. Lett., Vol. 77, pp. 3233-3235, 2000.
[7] A. Nishikawa, K. Kumakura, T. Akasaka, and T. Makimoto, “p-InGaN/n-GaN vertical conducting diodes on n+-SiC substrate for high power electronic device applications,” Jpn. J. Appl. Phys., Vol. 45, pp. 3387-3390, 2006.
[8] P. Gibart, “Metal organic vapour phase epitaxy of GaN and lateral overgrowth,” Rep. Prog. Phys., Vol. 67, pp. 667-715, 2004.
[9] M. Razeghi and M. Henini, Optoelectronic Devices: III-Nitrides, Elsevier Science, 2005, pp. 188.
[10] S. Fuke, H. Teshigawara, K. Kuwahara, Y. Takano, T. Ito, M. Yanagihara, and K. Ohtsuka, “Influences of initial nitridation and buffer layer deposition on the morphology of a (0001) GaN layer grown on sapphire substrates,” J. Appl. Phys., Vol. 83, pp. 764-767, 1998.
[11] C. C. Yang, M. C. Wu, C. A. Chang, and G. C. Chi, “Effects of multiple buffer layers on structural electronic properties of GaN growth by atmospheric pressure organometallic vapor phase epitaxy,” Mater. Sci. Eng. B, Vol. B68, pp. 22-25, 1999.
[12] K. Uchida, K. Nishida, M. Kondo, and H. Munekata, “Characterization of double-buffer layers and its application for the metalorganic vapor phase epitaxial growth of GaN,” Jpn. J. Appl. Phys., Vol. 37, pp. 3882-3888, 1998.
[13] O. Gelhausen, M. R. Phillips, E. M. Goldys, T. Paskova, B. Monemar, M. Strassburg, and A. Hoffmann, “Dissociation of H-related defect complexes in Mg-doped GaN,” Phys. Rev. B, Vol. 69, pp. 125210-1-125210-9, 2004.
[14] I. Akasaki, “Nitride semiconductors-impact on the future world,” J. Crystal Growth, Vol. 237-239, pp. 905-911, 2002.
[15] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., Vol. 31, pp. L139-L142, 1992.
[16] T.S. Jeong, J.H. Kim, M.S. Han, K.Y. Lim, C.J. Youn, J.O. Kim, Y.J. Jung, and H. Lee, “Room-temperature luminescence study on the effect of Mg activation annealing on p-GaN layers grown by MOCVD,” J. Crystal Growth, Vol. 280, pp. 401-407, 2005.
[17] C. R. Lee, J. Y. Leem, S. K. Noh, S. E. Park, J. I. Lee, C. S. Kim, S. J. Soh, and K. Y. Leem, “Characteristics of Mg-doped GaN epilayers grown with the variation of Mg incorporation,” J. Crystal Growth, Vol. 193, pp. 300-304, 1998.
[18] C. R. Lee, J. Y. Leem, and B. G. Ahn, “The annealing effects of Mg-doped GaN epilayers capped with SiO2 layers,” J. Crystal Growth, Vol. 216, pp. 62-68, 2000.
[19] I. Waki, H. Fujioka, M. Oshima, H. Miki and A. Fukizawa, “Low-temperature activation of Mg-doped GaN using Ni films,” Appl. Phys. Lett., Vol. 78, pp. 2899-2901, 2001.
[20] K. Kumakura and N. Kobayashi, “Increased electrical activity of Mg-acceptors in AlxGa1-xN/GaN superlattices,” Jpn. J. Appl. Phys., Vol. 38, pp. L1012-L1014, 1999.
[21] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., Vol. 36, pp. L382-385, 1997.
[22] H. Kollmer, J. S. Im, S. Heppel, J. Off, F. Scholz, and A. Hangleiter, “ Intra- and interwell transitions in GaInN/GaN multiple quantum wells with built-in piezoelectric fields,” Appl. Phys. Lett., Vol. 74, pp. 82-84, 1999.
[23] J. T. Kobayashi, N. P. Kobayashi, X. Zhang, P. D. Dapkus, D.H. Rich, “Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD,” J. Crystal Growth, Vol. 195, pp. 252-257, 1998.
[24] A. Krost, J. Bläsing, M. Lünenbürger, H. Protzmann, and M. Heuken, “Evaluation of strain and In content in (InGaN/GaN) multiquantum wells by x-ray analysis,” Appl. Phys. Lett., Vol. 75, pp. 689-691, 1999.
[25] N. Duxbury, U. Bangert, P. Dawson, E. J. Thrush, W. Van der Stricht, K. Jacobs, and I. Moerman, “Indium segregation in InGaN quantum-well structures,” Appl. Phys. Lett., Vol. 76, pp. 1600-1602, 2000.
[26] L. T. Romano, M. D. McCluskey, C. G. Van de Walle, J. E. Northrup, D. P. Bour, M. Kneissl, T. Suski, and J. Jun, “Phase separation in InGaN multiple quantum wells annealed at high nitrogen pressures,” Appl. Phys. Lett., Vol. 75, pp. 3950-3952, 1999.
[27] H. K. Cho, J. Y. Lee, C. S. Kim, G. M. Yang, N. Sharma, and C. Humphreys, “Microstructural characterization of InGaN/GaN multiple quantum wells with high indium composition,” J. Crystal Growth, Vol. 231, pp. 466-473, 2001.
[28] H. Amano, M. Iwaya, N. Hayashi, T. Kashima, S. Nitta, C. Wetzel, and I. Akasaki, “Control of dislocations and stress in AlGaN on sapphire using a low temperature interlayer,” Phys. Stat. Sol. (b), Vol. 216, pp. 683-689, 1999.
[29] I. H. Lee, T. G. Kim, and Y. Park, “Growth of crack-free AlGaN film on high-temperature thin AlN interlayer,” J. Crystal Growth, Vol. 234, pp. 305-310, 2002.
[30] J. Han, K. E. Waldrip, S. R. Lee, J. J. Figiel, S. J. Hearne, G. A. Petersen, and S. M. Myers, “Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers,” Appl. Phys. Lett., Vol. 78, pp. 67-69, 2001.
[31] C. Q. Chen, J. P. Zhang, M. E. Gaevski, H. M. Wang, W. H. Sun, R. S. Q. Fareed, J. W. Yang, and M. Asif Khan, “AlGaN layers grown on GaN using strain-relief interlayers,” Appl. Phys. Lett., Vol. 81, pp. 4961-4963, 2002.
[32] H. M. Wang, J. P. Zhang, C. Q. Chen, Q. Fareed, J. W. Yang, and M. A. Khan, “AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire,” Appl. Phys. Lett., Vol. 81, pp. 604-606, 2002.
[33] S. Fernández, F. B. Naranjo, F. Calle, M. A. Sánchez-García, and E. Calleja, “High-quality distributed Bragg reflectors based on AlxGa1-xN/GaN multilayers grown by molecular-beam epitaxy,” Appl. Phys. Lett., Vol. 79, pp. 2136-2138, 2001.
[34] N. Nakada, H. Ishikawa, T. Egawa, and T. Jimbo, “Suppression of crack generation in GaN/AlGaN distributed Bragg reflector on sapphire by the insertion of GaN/AlGaN superlattice grown by metal-organic chemical vapor deposition,” Jpn. J. Appl. Phys., Vol. 42, pp. L144-L146, 2003.
[35] T. Wang, R. J. Lynch, P. J. Parbrook, R. Butté, A. Alyamani, D. Sanvitto, D. M. Whittaker, and M. S. Skolnick, “High-reflectivity AlxGa1−xN/AlyGa1−yN distributed Bragg reflectors with peak wavelength around 350 nm,” Appl. Phys. Lett., Vol. 85, pp. 43-45, 2004.
[36] G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed Bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 88, pp. 061904-1-061904-3, 2006.
[37] J.-F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. (b), Vol. 242, pp. 2326-2344, 2005.
[38] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., Vol. 81, pp. 1246-1248, 2002.
[39] A. Dadgar, F. Schulze, J. Bläsing, A. Diez, A. Krost, M. Neuburger, E. Kohn, I. Daumiller, and M. Kunze, “High-sheet-charge–carrier-density AlInN/GaN field-effect transistors on Si(111),” Appl. Phys. Lett., Vol. 85, pp. 5400-5402, 2004.
[40] E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett., Vol. 89, pp. 071107-1-071107-3, 2006.
[41] G. Cywiński, C. Skierbiszewski, A. Fedunieiwcz-Żmuda, M. Siekacz, L. Nevou, L. Doyennette, M. Tchernycheva, F. H. Julien, P. Prystawko, M. Kryśko, S. Grzanka, I. Grzegory, A. Presz, J. Z. Domagała, J. Smalc, M. Albrecht, T. Remmele, and S. Porowski, “Growth of thin AlInN/GaInN quantum wells for applications to high-speed intersubband devices at telecommunication wavelengths,” J. Vac. Sci. Technol. B, Vol. 24, pp. 1505-1509, 2006.
[42] E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, 2003, pp. 75.
[43] Y. T. Rebane, Y. G. Shreter, B. S. Yavich, V. E. Bougrov, S. I. Stepanov, and W. N. Wang, “Light emitting diode with charge asymmetric resonance tunneling,” , Vol. 180, pp. 121-126, 2000.
[44] J. K. Sheu, G. C. Chi, and M. J. Jou, “Enhanced output power in an InGaN–GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer,” IEEE Photon. Technol. Lett., Vol. 13, pp. 1164-1166, 2001.
[45] L. W. Ji, Y. K. Su, S. J. Chang, C. S. Chang, L. W. Wu, W. C. Lai, X. L. Du, and H. Chen, “InGaN/GaN multi-quantum dot light-emitting diodes,” J. Crystal Growth, Vol. 263, pp. 114-118, 2004.
[46] L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, J. K. Sheu, “In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer,” Solid-State Electron., Vol. 47, pp. 2027-2030, 2003.
[47] H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology, Vol. 16, pp. 1844-1848, 2005.
[48] B. Gil, Group Ⅲ Nitride Semiconductor Compounds Physics and Applications, Berlin, Germany: Oxford University Press, 1998, pp. 70.
[49] J. I. Pankove, Gallium Nitride (GaN) I Semiconductors and Semimetals, Academic, 1998, pp. 13.
[50] B. Gil, Group Ⅲ Nitride Semiconductor Compounds Physics and Applications, Berlin, Germany: Oxford University Press, 1998, pp. 73.
[51] T. Sasaki and T. Matsuoka, “Analysis of two-step-growth conditions for GaN on an AIN buffer layer,” J. Appl. Phys., Vol. 77, pp. 192-200, 1995.
[52] Z. C. Feng, III-Nitride Semiconductor Materials, World Scientific Publishing Company, 2006, pp. 44.
[53] Z. C. Feng, III-Nitride Semiconductor Materials, World Scientific Publishing Company, 2006, pp. 57.
Chapter 2
[1] M. Razeghi and M. Henini, Optoelectronic Devices: III-Nitrides, Elsevier Science, 2005, pp. 10.
[2] M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol., Vol. 3, pp. 160-175, 2007.
[3] M. Razeghi and M. Henini, Optoelectronic Devices: III-Nitrides, Elsevier Science, 2005, pp. 15.
[4] P. Ruterana, M. Albrecht, and J. Neugebauer, Nitride Semiconductors: Handbook on Materials and Devices, Wiley-VCH, 2003, pp. 628.
[5] P. Ruterana, M. Albrecht, and J. Neugebauer, Nitride Semiconductors: Handbook on Materials and Devices, Wiley-VCH, 2003, pp. 629.
[6] P. M. Asbeck, E.T. Yu, S. S. Lau, G.J. Sullivan, J. V. Hove, and J. Redwing, “Piezoelectric charge densities in AIGaN/GaN HFETs,” Electron. Lett., Vol. 33, pp. 1230-1231, 1997.
[7] S.M. Sze, Semiconductor Devices: Physics and Technology, Wiley, Chichester, 2002, p. 249.
[8] E. F. Schubert, W. Grieshaber, and I. D. Goepfert, “Enhancement of deep acceptor activation in semiconductors by superlattice doping,” Appl. Phys. Lett., Vol. 69, pp. 3737-3739, 1996.
[9] I. D. Goepfert, E. F. Schubert, A. Osinsky, and P.E. Norris, “Demonstration of efficient p-type doping in AIxGa1-xN/GaN superlattice structures,” Electron. Lett., Vol. 35, pp. 1109-1111, 1999.
[10] L. Chernyak, A. Osinsky, V. N. Fuflyigin, J. W. Graff, and E. F. Schubert, “Minority electron transport anisotropy in p-type AlxGa1-xN/GaN superlattices,” IEEE Trans. Electron Devices, Vol. 48, pp. 433-437, 2001.
[11] M. Z. Kauser, A. Osinsky, A. M. Dabiran, and P. P. Chow, “Enhanced vertical transport in p-type AlGaN/GaN superlattices,” Appl. Phys. Lett., Vol. 85, pp. 5275-5277, 2004.
[12] H. M. Wang, J. P. Zhang, C. Q. Chen, Q. Fareed, J. W. Yang, and M. A. Khan, “AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire,” Appl. Phys. Lett., Vol. 81, pp. 604-606, 2002.
[13] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., Vol. 68, pp. 643-645, 1996.
[14] P. Boguslawski, E. L. Briggs, and J. Bernholc, “Native defects in gallium nitride,” Phys. Rev. B, Vol. 51, pp. 17255-17259, 1995.
[15] S. Y. Karpov and Y. N. Makarov, “Dislocation effect on light emission efficiency in gallium nitride,” Appl. Phys. Lett., Vol. 81, pp. 4721-4723, 2002.
[16] J. Y. Shi, L. P. Yu, Y. Z. Wang, G. Y. Zhang, and H. Zhang, “ Influence of different types of threading dislocations on the carrier mobility and photoluminescence in epitaxial GaN,” Appl. Phys. Lett., Vol. 80, pp. 2293-2295, 2002.
[17] A. Watanabe, H. Takahashi, T. Tanaka, H. Ota, K. Chikuma, H. Amano, T. Kashima, R. Nakamura, and I. Akasaki, “Correlation between dislocation density and the macroscopic properties of GaN grown by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., Vol. 38, pp. L1159-L1162, 1999.
[18] E. F. Schubert, Doping in III-V Semiconductors, Cambridge University Press, 1993, pp. 261.
[19] D. G. Zhao, H. Yang, J. J. Zhu, D. S. Jiang, Z. S. Liu, S. M. Zhang, Y. T. Wang, and J. W. Liang, “Effects of edge dislocations and intentional Si doping on the electron mobility of n-type GaN films,” Appl. Phys. Lett., Vol. 89, pp. 112106-1-112106-3, 2006.
[20] J. I. Pankove, Gallium Nitride (GaN) I Semiconductors and Semimetals, Academic, 1998, pp. 28.
[21] Z. N. Yu, W. Xue, J. W. Seo, and S. J. Yu, “Improvement of ohmic contact to p-type GaN using two-step activation processing,” Proc. of SPIE, Vol. 5624, pp. 255-258, 2004.
[22] C. R. Lee, J. Y. Leem, and B. G. Ahn, “The annealing effects of Mg-doped GaN epilayers capped with SiO2 layers,” J. Crystal Growth, Vol. 216, pp. 62-68, 2000.
[23] D. D. Koleske, A. E. Wickenden, R. L. Henry, J. C. Culbertson, and M. E. Twigg, “GaN decomposition in H2 and N2 at MOVPE temperatures and pressures,” J. Crystal Growth, Vol. 223, pp. 466-483, 2001.
[24] M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys., Vol. 97, pp. 061301-1-061301-95, 2005.
[25] H. Alves, M. Böhm, A. Hofstaetter, H. Amano, S. Einfeldt, D. Hommel, D. M. Hofmann, and B. K. Meyer, “Compensation mechanism in MOCVD and MBE grown GaN:Mg,” Physica B, Vol. 308-310, pp. 38-41, 2001.
[26] E. Muñoz, E. Monroy, J. L. Pau, F. Calle, F. Omnès, and P. Gibart, “III nitrides and UV detection,” J. Phys.: Condens. Matter, Vol. 13, pp. 7115-7137, 2001.
[27] V. Lebedev, I. Cimalla, V. Cimalla, R. Wagner, U. Kaiser, and O. Ambacher, “Defect related absorption and emission in AlGaN solar-blind UV photodetectors,” Phys. Stat. Sol. (c), Vol. 2, pp. 1360-1365, 2005.
[28] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, 2001, pp. 93.
[29] S. C. Choi, J. H. Kim, J. Y. Choi, K. J. Lee, K. Y. Lim, and G. M. Yang, “Al concentration control of epitaxial AlGaN alloys and interface control of GaN/AlGaN quantum well structures,” J. Appl. Phys., Vol. 87, pp. 172-176, 2000.
[30] Z. C. Feng, III-Nitride Semiconductor Materials, World Scientific Publishing Company, 2006, pp. 265.
[31] M. Miyoshi, T. Egawa, and H. Ishikawa, “Structural characterization of strained AlGaN layers in different Al content AlGaN/GaN heterostructures and its effect on two-dimensional electron transport properties,” J. Vac. Sci. Technol. B, Vol. 23, pp. 1527-1531, 2005.
[32] D. B. Li, M. Aoki, T. Katsuno, H. Miyake, K. Hiramatsu, and T. Shibata, “Influence of growth conditions on Al incorporation to AlxGa1-xN (x>0.4) grown by MOVPE,” J. Crystal Growth, Vol. 298, pp. 372-374, 2007.
[33] G. S. Huang, H. H. Yao, H. C. Kuo, and S. C. Wang, “Effect of growth conditions on the Al composition and quality of AlGaN film,” Mater. Sci. Eng. B, Vol. 136, pp. 29-32, 2007.
[34] G. S. Huang, H. H. Yao, T. C. Lu, H. C. Kuo, and S. C. Wang, “Aluminum incorporation into AlGaN grown by low-pressure metal organic vapor phase epitaxy,” J. Appl. Phys., Vol. 99, pp. 104901-1-104901-5, 2006.
[35] T. Boufaden, A. Rebey, and B. E. Jani, “Hot filament assisted metalorganic vapor-phase deposition of GaN,” J. Crystal Growth, Vol. 206, pp. 1-7, 1999.
[36] W. Terashima, S. B. Che, Y. Ishitani, and A. Yoshikawa, “Growth and Characterization of AlInN Ternary Alloys in Whole Composition Range and Fabrication of InN/AlInN Multiple Quantum Wells by RF Molecular Beam Epitaxy,” Jpn. J. Appl. Phys., Vol. 45, pp. L539-L542, 2006.
[37] G. Cywiński, C. Skierbiszewski, A. F. Żmuda, M. Siekacz, L. Nevou, L. Doyennette, M. Tchernycheva, F. H. Julien, P. Prystawko, M. Kryśko, S. Grzanka, I. Grzegory, A. Presz, J. Z. Domagała, J. Smalc, M. Albrecht, T. Remmele, and S. Porowski, “Growth of thin AlInN/GaInN quantum wells for applications to high-speed intersubband devices at telecommunication wavelengths,” J. Vac. Sci. Technol. B, Vol. 24, pp. 1505-1509, 2006.
[38] S. Yamaguchi, M. Kariya, S. Nitta, H. Kato, T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, “Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy,” J. Crystal Growth, Vol. 195, pp. 309-313, 1998.
[39] E. L. Piner, M. K. Behbehani, N. A. El-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros, and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films,” Appl. Phys. Lett., Vol. 70, pp. 461-463, 1997.
[40] C. R. Lee, S. J. Son, I. H. Lee, J. Y. Leem, and S. K. Noh, “Characteristics of InxGa1-xN/GaN grown by LPMOVPE with the variation of growth temperature,” J. Crystal Growth, Vol. 182, pp. 6-10, 1997.
[41] A. Gadanecz, J. Bläsing, A. Dadgar, C. Hums, and A. Krost, “Thermal stability of metal organic vapor phase epitaxy grown AlInN,” Appl. Phys. Lett., Vol. 90, pp. 221906-1-221906-3, 2007.
[42] S. N. Lee, T. Jang, J. K. Son, H. S. Paek, T. Sakong, E. Yoon, O. H. Nam, and Y. Park, “Carrier transport by formation of two-dimensional hole gas in p-type Al0.1Ga0.9N/GaN superlattice for AlGaInN-based laser diode,” J. Crystal Growth, Vol. 287, pp. 554-557, 2006.
[43] P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett., Vol. 74, pp. 3681-3683, 1999.
[44] E. L. Waldron, J. W. Graff, and E. F. Schubert, “Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices,” Appl. Phys. Lett., Vol. 79, pp. 2737-2739, 2001.
[45] C. Y. Hu, Y. J. Wang, K. Xu, X. D. Hu, L. S. Yu, Z. J. Yang, B. Shen, and G. Y. Zhang, “ Vertical conductivity of p-AlxGa1-xN/GaN superlattices measured with modified transmission line model,” J. Crystal Growth, Vol. 298, pp. 815-818, 2007.
[46] T. Murata, M. Hikita, Y. Hirose, Y. Uemoto, K. Inoue, T. Tanaka, and D. Ueda, “Source resistance reduction of AlGaN-GaN HFETs with novel superlattice cap layer,” IEEE Trans. Electron Devices, Vol. 52, pp. 1042-1047, 2005.
[47] S. C. Wei, Y. K. Su, S. J. Chang, S. M. Chen, and W. L. Li, “ Nitride-based MQW LEDs with multiple GaN-SiN nucleation layers,” IEEE Trans. Electron Devices, Vol. 52, pp. 1104-1109, 2005.
[48] M. Hanzaz, A. Bouhdada, P. Gibart, and F. Omnès, “Impact of the defects on the electrical and optical properties of AlGaN ultraviolet photodetectors,” J. Appl. Phys., Vol. 92, pp. 13-18, 2002.
[49] V. Lebedev, I. Cimalla, V. Cimalla, R. Wagner, U. Kaiser, and O. Ambacher, “Defect related absorption and emission in AlGaN solar-blind UV photodetectors,” Phys. Stat. Sol. (c), Vol. 2, pp. 1360-1365, 2005.
[50] J. Bai, T. Wang, P. J. Parbrook, Q. Wang, K. B. Lee, and A. G. Cullis, “Two coexisting mechanisms of dislocation reduction in an AlGaN layer grown using a thin GaN interlayer,” Appl. Phys. Lett., Vol. 91, pp. 131903-1-131903-3, 2007.
[51] H. Jiang, T. Egawa, M. Hao, and Y. Liu, “Reduction of threading dislocations in AlGaN layers grown on AlN/sapphire templates using high-temperature GaN interlayer,” Appl. Phys. Lett., Vol. 87, pp. 241911-1-241911-3, 2005.
[52] K. Murakawa, E. Niikura, F. Hasegawa, and H. Kawanishi, “Reduction of threading dislocations in AlGaN/AlN/SiC epitaxial layers by controlled strain with (AlN/GaN) multibuffer-layer structure,” Jpn. J. Appl. Phys., Vol. 46, pp. 3301-3304, 2007.
Chapter 3
[1] T. Nagatomo, T. Kuboyama, H. Minamino, and O. Omoto, “Properties of Ga1-xInxN films prepared by MOVPE,” Jpn. J. Appl. Phys., Vol. 28, pp. L1334-L1336, 1989.
[2] N. Yoshimoto, T. Matsuoka, T. Sasaki, and A. Katsui, “Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 59, pp. 2251-2253, 1991.
[3] S. Nakamura and T. Mukai, “High-quality InGaN films grown on GaN films,” Jpn. J. Appl. Phys., Vol. 31, pp. L1457-L1459, 1992.
[4] S. Keller, B. P. Keller, Y. F. Wu, D. Kapolnek, H. Masui, M. Kato, S. Imagi, U. K. Mishra, and S. P. DenBaars, “Growth and characterization of InGaN/GaN double heterostructure LEDs grown by MOCVD,” Proc. of IEEE/Cornell Conference, pp. 56-63, 1995.
[5] M. Koike, S. Yamasaki, S. Nagai, N. Koide, S. Asami, H. Amano, and I. Akasaki, “High-quality GaInN/GaN multiple quantum wells,” Appl. Phys. Lett., Vol. 68, pp. 1403-1405, 1996.
[6] T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano, and I. Akasaki, “Optical properties of strained AlGaN and GaInN on GaN,” Jpn. J. Appl. Phys., Vol. 36, pp. L177-L179, 1997.
[7] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., Vol. 36, pp. L382-L385, 1997.
[8] P. Perlin, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, “InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy,” Appl. Phys. Lett., Vol. 73, pp. 2778-2780, 1998.
[9] T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, “Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells,” Appl. Phys. Lett., Vol. 73, pp. 3571-3573, 1998.
[10] J. Bai, T. Wang, and S. Sakai, “Study of the strain relaxation in InGaN/GaN multiple quantum well structures,” J. Appl. Phys., Vol. 90, pp. 1740-1744, 2001.
[11] T. Wang, P. J. Parbrook, M. A. Whitehead, W. H. Fan, and A.M. Fox, “Study of stimulated emission from InGaN/GaN multiple quantum well structures,” J. Crystal Growth, Vol. 273, pp. 48-53, 2004.
[12] T. Wang, P. J. Parbrook, W. H. Fan, and A. M. Fox, “Optical investigation of InGaN/GaN multiple-quantum wells under high excitation,” Appl. Phys. Lett., Vol. 84, pp. 5159-5161, 2004.
[13] P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lambert, and R. D. Dupuis, “Properties of InGaN quantum-well heterostructures grown on sapphire by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 71, pp. 1537-1539, 1997.
[14] H. K. Cho, J. Y. Lee, and J. Y. Leem, “Strain relaxation behavior of the InGaN/GaN multiple quantum wells observed by transmission electron microscopy,” Appl. Surf. Sci., Vol. 221, pp. 288-292, 2004.
[15] F. S. Sandvik, M. Jamil, K.Topol, J. R. Grandusky, K. A Dunn, J. Ramer, and V. N. Merai, “Origin of ring defects in high In content green InGaN-GaN MQW: an ultrasonic force microscopy study,” MRS Internet J. Nitride Semicond. Res., Vol. 10, pp. 1-7, 2005.
[16] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, 2001, pp. 526.
[17] J. I. Pankove, Gallium Nitride (GaN) I Semiconductors and Semimetals, Academic, 1998, pp. 131.
[18] H. K. Yuh, E. Yoon, S. K. Shee, J. B. Lam, C. K. Choi, G. H. Gainer, G. H. Park, S. J. Hwang, and J. J. Song, “Effect of the number of wells on optical and structural properties in InGaN quantum well structures grown by metalorganic chemical vapor deposition,” J. Appl. Phys., Vol. 91, pp. 3483-3485, 2002.
[19] F. A. Ponce, D. P. Bour, W. Götz, and P. J. Wright, “Spatial distribution of the luminescence in GaN thin films,” Appl. Phys. Lett., Vol. 68, pp. 57-59, 1996.
[20] J. C. Zhang, D. S. Jiang, Q. Sun, J. F. Wang, Y. T. Wang, J. P. Liu, J. Chen, R. Q. Jin, J. J. Zhu, H. Yang, T. Dai, and Q. J. Jia, “Influence of dislocations on photoluminescence of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., Vol. 87, pp. 071908-1-071908-3, 2005.
[21] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes,” Appl. Phys. Lett., Vol. 66, pp. 1249-1251, 1995.
[22] J. F. Carlin and M. Ilegems, “High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN,” Appl. Phys. Lett., Vol. 83, pp. 668-670, 2003.
[23] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, and S. Guangdi, “Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction,” Solid-State Electron., Vol. 51, pp. 860-864, 2007.
[24] H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett., Vol. 79, pp. 215-217, 2001.
[25] A. L. Gurskii, V. N. Pavlovskii, E. V. Lutsenko, V. Z. Zubialevich, G. P. Yablonskii, H. Kalisch, A. Szymakowski, R. H. Jansen, A. Alam, B. Schineller, and M. Heuken, “Influence of MQW growth temperature and post-epitaxial annealing on luminescence and laser properties of InGaN/GaN MQW heterostructures grown by MOCVD on sapphire substrates,” J. Crystal Growth, Vol. 275, pp. e1047-e1051, 2005.
[26] T. S. Jeong, J. H. Kim, M. S. Han, K. Y. Lim, and C. J. Youn, “X-ray and cathodoluminescence study on the effect of intentional long time annealing of the InGaN/GaN multiple quantum wells grown by MOCVD,” J. Crystal Growth, Vol. 280, pp. 357-363, 2005.
[27] C. H. Huang, K. Y. Hsieh, H. S. Hwung, and L. W. Tu, “Novel processing for improving optical property of InGaN/GaN MQW light emitting diode,” Proc. of SPIE, Vol. 3938, pp. 124-130, 2000.
[28] I. P. Marko, E. V. Lutsenko, V. N. Pavlovskii, G. P. Yablonskii, O. Schön, H. Protzmann, M. Lünenbürger, M. Heuken, B. Schineller, and K. Heime, “Influence of UV light-assisted annealing on optical properties of InGaN/GaN heterostructures grown by MOVPE,” Phys. Stat. Sol. (b), Vol. 216, pp. 175-180, 1999.
Chapter 4
[1] E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, 2003, pp. 185.
[2] N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett., Vol. 68, pp. 1895-1897, 1996.
[3] M. de la Fargue and M. Missous, “Design and fabrication of SiO2/TiO2 dielectric bragg reflectors by RF sputtering: application to near infrared InGaAs/GaAs/AlGaAs vertical cavity surface emitting laser,” Proc. of IEEE Conference, pp. 176-181, 1999.
[4] J. Bellessa, S. Rabaste, J. C. Plenet, and J. Mugnier, “Microcavities elaborated by sol-gel process,” Proc. of SPIE, Vol. 4944, pp. 15-22, 2003.
[5] K. Streubel, S. Rapp, J. André, and J. Wallin, “Room-temperature pulsed operation of 1.5-μm vertical cavity lasers with an InP-based Bragg reflector,” IEEE Photon. Technol. Lett., Vol. 8, pp. 1121-1123, 1996.
[6] H. C. Lin and K. Y. Cheng, “Fabrication of substrate-independent hybrid distributed Bragg reflectors using metallic wafer bonding,” IEEE Photon. Technol. Lett., Vol. 16, pp. 837-839, 2004.
[7] J. C. Bean, L. J. Peticolas, R. Hull, and D. L. Windt, R. Kuchibhotla, and J. C. Campbell, “Design and fabrication of asymmetric strained layer mirrors for optoelectronic applications,” Appl. Phys. Lett., Vol. 63, pp. 444-446, 1993.
[8] S. S. Murtaza, K. A. Anselm, A. Srinivasan, B. G. Streetman, J. C. Campbell, J. C. Bean, and L. Peticolas, “High-reflectivity Bragg mirrors for optoelectronic applications,” IEEE J. Quantum Electron., Vol. 31, pp. 1819-1825, 1995.
[9] J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. (b), Vol. 242, pp. 2326-2344, 2005.
[10] C. W. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, Cambridge University Press, 2001, pp. 313.
[11] J. Qu, J. Li, and G. Zhang, “AlGaN/GaN heterostructure grown by metallorganic vapor phase epitaxy,” Solid State Commun., Vol. 107, pp. 467-470, 1998.
[12] H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices, Springer, 2002, pp. 33.
[13] N. Nakada, H. Ishikawa, T. Egawa, and T. Jimbo, “Suppression of crack generation in GaN/AlGaN distributed Bragg reflector on sapphire by the insertion of GaN/AlGaN superlattice grown by metal-organic chemical vapor deposition,” Jpn. J. Appl. Phys., Vol. 42, pp. L144-L146, 2003.
[14] Y. Kida, T. Shibata, H. Naoi, H. Miyake, K. Hiramatsu, and M. Tanaka, “Growth of crack-free and high-quality AlGaN with high Al content using epitaxial AlN (0001) films on sapphire,” Phys. Stat. Sol. (a), Vol. 194, pp. 498-501, 2002.
[15] S. Einfeldt, V. Kirchner, H. Heinke, M. Dießelberg, S. Figge, K. Vogeler, and D. Hommel, “ Strain relaxation in AlGaN under tensile plane stress,”J. Appl. Phys., Vol. 88, pp. 7029-7036, 2000.
[16] F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett., Vol. 82, pp. 499-501, 2003.
[17] P. Y. Kuei, L. Z. Hsieh, L. B. Chang, M. J. Jeng, and R. M. Lin, “ On the reflectivity spectrum of implanted AlGaAs distributed Bragg reflector,” Jpn. J. Appl. Phys., Vol. 42, pp. 6319-6322, 2003.
[18] H. H. Yao, C. F. Lin, H. C. Kuo, and S. C. Wang, “MOCVD growth of AlN/GaN DBR structures under various ambient conditions,” J. Crystal Growth, Vol. 262, pp. 151-156, 2004.
[19] M. Iwaya, S. Terao, N. Hayashi, T. Kashima, H. Amano, and I. Akasaki, “Realization of crack-free and high-quality thick AlxGa1-xN for UV optoelectronics using low-temperature interlayer,” Appl. Surf. Sci., Vol. 159-160, pp. 405-413, 2000.
[20] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science, Vol. 285, pp. 1905-1906, 1999.
Chapter 5
[1] R. S. Kern, “ Progress and status of visible light emitting diode technology,” Proc. of SPIE, Vol. 3621, pp. 16-27, 1999.
[2] C. Y. Lee, C. H. Yen, J. Y. Su, H. W. Lin, and W. C. Liu, “Enhanced luminescence and reduced junction temperature in n-type modulation-doped AlGaInP multiquantum-well light-emitting diodes,” Jpn. J. Appl. Phys., Vol. 45, pp. 4000-4002, 2006.
[3] Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, M. J. Liou, C. W. Chang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “High brightness AlGaInP-based light emitting diodes by adopting the stripe-patterned omni-directional reflector,” Semicond. Sci. Technol., Vol. 21, pp. 184-189, 2006.
[4] P. Prete and N. Lovergine, “Recent developments in the MOVPE growth of low H content ZnSe-based compounds and heterostructures,” Prog. Cryst. Growth Charact. Mater., Vol. 44, pp. 1-44, 2002.
[5] K. Kimura, S. Miwa, T. Yasuda, L. H. Kuo, C. G. Jin, K. Tanaka, and T. Yao, “Efficient doping of nitrogen with high activation ratio into ZnSe using a high-power plasma source,” Appl. Phys. Lett., Vol. 70, pp. 81-83, 1997.
[6] S. L. Chuang, A. Ishibashi, S. Kijima, N. Nakayama, M. Ukita, and S. Taniguchi, “Kinetic model for degradation of light-emitting diodes,” IEEE J. Quantum Electron., Vol. 33, pp. 970-979, 1997.
[7] T. Nakamura, “Development of ZnSe-based white light emitting diodes with longer lifetimes of over 10,000 hr,” Electr. Eng. Jpn., Vol. 154, pp. 42-48, 2006.
[8] T. Yamamoto and H. K. Yoshida, “Solution using a codoping method to unipolarity for the fabrication of p-type ZnO,” Jpn. J. Appl. Phys., Vol. 38, pp. L166-L169, 1999.
[9] J. Wang, E. Elamurugu, N. P. Barradas, E. Alves, A. Rego, G. Gonçalves, R. Martins, and E. Fortunato, “Co-doping of aluminium and gallium with nitrogen in ZnO films deposited by RF magnetron sputtering,” J. Phys.: Condens. Matter, Vol. 20, pp. 1-4, 2008.
[10] B. Claflin, D. C. Look, S. J. Park, and G. Cantwell, “Persistent n-type photoconductivity in p-type ZnO,” J. Crystal Growth, Vol. 287, pp. 16-22, 2006.
[11] Z. Y. Xiao, Y. C. Liu, R. Mu, D. X. Zhao, and J. Y. Zhang, “Stability of p-type conductivity in nitrogen-doped ZnO thin film,” Appl. Phys. Lett., Vol. 92, pp. 052106-1-052106-3, 2008.
[12] I. Akasaki and H. Amano, “Breakthroughs in improving crystal quality of GaN and invention of the p-n junction blue-light-emitting diode,” Jpn. J. Appl. Phys., Vol. 45, pp. 9001-9010, 2006.
[13] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes,” Appl. Phys. Lett., Vol. 66, pp. 1249-1251, 1995.
[14] S. Nakamura, M. Senoh, N. Iwasa, S. I. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys., Vol. 34, pp. L1332-L1335, 1995.
[15] S. Nakamura, “InGaN-based blue light-emitting diodes and laser diodes,” J. Crystal Growth, Vol. 201/202, pp. 290-295, 1999.
[16] T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., Vol. 37, pp. L839-L841, 1998.
[17] J. K. Sheu, G. C. Chi, and M. J. Jou, “Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN superlattice,” IEEE Electron Device Lett., Vol. 22, pp. 160-162, 2001.
[18] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, “Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer,” IEEE Electron Device Lett., Vol. 22, pp. 460-462, 2001.
[19] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, “Highly reliable nitride-based LEDs with SPS+ITO upper contacts,” IEEE J. Quantum Electron., Vol. 39, pp. 1439-1443, 2003.
[20] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact,” IEEE Photon. Technol. Lett., Vol. 16, pp. 1002-1004, 2004.
[21] C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B, Vol. 106, pp. 69-72, 2004.
[22] K. M. Chang, J. Y. Chu, and C. C. Cheng, “Highly reliable GaN-based light-emitting diodes formed by p-In0.1Ga0.9N-ITO structure,” IEEE Photon. Technol. Lett., Vol. 16, pp. 1807-1809, 2004.
[23] C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Technol. Lett., Vol. 18, pp. 274-276, 2006.
[24] W. C. Lai, S. J. Chang, M. Yokoyam, J. K. Sheu, and J. F. Chen, “InGaN-AlInGaN multiquantum-well LEDs,” IEEE Photon. Technol. Lett., Vol. 13, pp. 559-561, 2001.
[25] S. H. Baek, J. O. Kim, M. K. Kwon, I. K. Park, S. I. Na, J. Y. Kim, B. Kim, and S. J. Park, “ Enhanced carrier confinement in AlInGaN–InGaN quantum wells in near ultraviolet light-emitting diodes,” IEEE Photon. Technol. Lett., Vol. 18, pp. 1276-1278, 2006.
[26] C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. M. Tsai, and S. C. Chen, “Nitride-based near-ultraviolet multiple-quantum well light-emitting diodes with AlGaN barrier layers,” J. Electron. Mater., Vol. 32, pp. 415-418, 2003.
[27] W. C. Peng and Y. S. Wu, “Enhanced light output in double roughened GaN light-emitting diodes via various texturing treatments of undoped-GaN layer,” Jpn. J. Appl. Phys., Vol. 45, pp. 7709-7712, 2006.
[28] H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C, Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology, Vol. 16, pp. 1844-1848, 2005.
[29] E. J. Kang, C. Huh, S. H. Lee, J. J. Jung, S. J. Lee, and S. J. Park, “ Improvement in light-output power of InGaN/GaN LED by formation of nanosize cavities on p-GaN surface,” Electrochem. Solid State Lett., Vol. 8, pp. G327-G329, 2005.
[30] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Trans. Electron Devices, Vol. 52, pp. 2346-2349, 2005.
[31] C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, “Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Electron Device Lett., Vol. 26, pp. 464-466, 2005.
[32] Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, “InGaN-GaN MQW LEDs with Si treatment,” IEEE Photon. Technol. Lett., Vol. 17, pp. 1620-1622, 2005.
[33] H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology, Vol. 17, pp. 2998-3001, 2006.
[34] H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, and Y. Park, “Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers,” Appl. Phys. Lett., Vol. 90, pp. 161110-1-161110-3, 2007.
[35] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett., Vol. 90, pp. 263511-1-263511-3, 2007.
[36] L. Wang, J. Wang, H. Li, G. Xi, Y. Jiang, W. Zhao, Y. Han, and Y. Luo, “ Study on injection efficiency in InGaN/GaN multiple quantum wells blue light emitting diodes,” Appl. Phys. Express, Vol. 1, pp. 021101-1-021101-3, 2008.
[37] T. Böttcher, S. Figge, S. Einfeldt, R. Chierchia, R. Kröger, C. Petter, C. Zellweger, H. J. Böuhlmann, M. Dieselberg, D. Rudloff, J. Christen, H. Heinke, P. L. Ryder, M. Ilegems, and D. Hommel, “GaN based laser diodes - epitaxial growth and device fabrication,” Phys. Stat. Sol. (c), Vol. 0, pp. 1846-1859, 2003.
[38] S.M. Sze, Semiconductor Devices: Physics and Technology, Wiley, Chichester, 2002, p. 301.
[39] J. F. Carlin, J. Dorsaz, E. Feltin, R. Butté, N. Grandjean, M. Ilegems, and M. Laügt, “Crack-free fully epitaxial nitride microcavity using highly reflective AlInN/GaN Bragg mirrors,” Appl. Phys. Lett., Vol. 86, pp. 031107-1-031107-3, 2005.
[40] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett., Vol. 73, pp. 1691-1693, 1998.
[41] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, and S. Guangdi, “Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction,” Solid-State Electron., Vol. 51, pp. 860-864, 2007.
[42] M. Razeghi and M. Henini, Optoelectronic Devices: III-Nitrides, Elsevier Science, 2005, pp. 229.
[43] J. B. Limb, W. Lee, J. H. Ryou, D. Yoo, and R.D. Dupuis, “Comparison of GaN and In0.04Ga0.96N p-layers on the electrical and electroluminescence properties of green light emitting diodes,” J. Electron. Mater., Vol. 36, pp. 426-430, 2007.
[44] H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hsueh, T. C. Lu, H. C. Kuo, S. C. Wang, C. C. Yu, and S. Y. Kuo, “Enhanced light output in InGaN/GaN light emitting diodes with excimer laser etching surfaces,” Jpn. J. Appl. Phys., Vol. 45, pp. 3442-3445, 2006.
[45] R. C. Tu, C. J. Tun, S. M. Pan, C. C. Chuo, J. K. Sheu, C. E. Tsai, T. C. Wang, and G. C. Chi, “Improvement of near-ultraviolet InGaN–GaN light-emitting diodes with an AlGaN electron-blocking layer grown at low temperature,” IEEE Photon. Technol. Lett., Vol. 15, pp. 1342-1344, 2003.
[46] H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck-Shockley relation,” J. Appl. Phys., Vol. 88, pp. 1525-1534, 2000.
[47] J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett., Vol. 84, pp. 2805-2807, 2004.
Chapter 6
[1] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys., Vol. 86, pp. 1-78, 1999.
[2] T. D. Moustakas, E. Iliopoulos, A. V. Sampath, H. M. Ng, D. Doppalapudi, M. Misra, D. Korakakis, and R. Singh, “Growth and device applications of III-nitrides by MBE,” J. Crystal Growth, Vol. 227-228, pp. 13-20, 2001.
[3] K. Poochinda, T. C. Chen, T. G. Stoebe, and N. L. Ricker, “Structural, optical and electrical properties of GaN and InGaN films grown by MOCVD,” J. Crystal Growth, Vol. 272, pp. 460-465, 2004.
[4] M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys., Vol. 97, pp.061301-1 -061301-95, 2005.
[5] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, Vol. 56, pp. R10 024-R10 027, 1997.
[6] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “ Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, Vol. 406, pp. 865-868, 2000.
[7] A. Bhattacharyya, I. Friel, S. Iyer, T. C. Chen, W. Li, J. Cabalu, Y. Fedyunin, K. F. Ludwig Jr., T. D. Moustakas, H. P. Maruska, D. W. Hill, J. J. Gallagher, M. C. Chou, and B. Chai, “Comparative study of GaN/AlGaN MQWs grown homoepitaxially on (1-100) and (0001) GaN,” J. Crystal Growth, Vol. 251, pp. 487-493, 2003.
[8] P. P. Paskov, R. Schifano, T. Malinauskas, T. Paskova, J. P. Bergman, B. Monemar, S. Figge, D. Hommel, B. A. Haskell, P. T. Fini, J. S. Speck, and S. Nakamura, “Photoluminescence of a-plane GaN: comparison between MOCVD and HVPE grown layers,” Phys. Stat. Sol. (c), Vol. 3, pp. 1499-1502, 2006.
[9] M. McLaurin, T. E. Mates, F. Wu, and J. S. Speck, “Growth of p-type and n-type m-plane GaN by molecular beam epitaxy,” J. Appl. Phys., Vol. 100, pp. 063707-1-063707-7, 2006.
[10] C. Chen, V. Adivarahan, J. Yang, M. Shatalov, E. Kuokstis, and M. A. Khan, “Ultraviolet light emitting diodes using non-polar a-plane GaN-AlGaN multiple quantum wells,” Jpn. J. Appl. Phys., Vol. 42, pp. L1039-L1040, 2003.
[11] A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, and M. A. Khan, “Visible light-emitting diodes using a-plane GaN–InGaN multiple quantum wells over r-plane sapphire,” Appl. Phys. Lett., Vol. 84, pp. 3663-3665, 2004.
[12] P. P. Paskov, R. Schifano, T. Malinauskas, T. Paskova, J. P. Bergman, B. Monemar, S. Figge, D. Hommel, B. A. Haskell, P. T. Fini, J. S. Speck, and S. Nakamura, “Photoluminescence of a -plane GaN: comparison between MOCVD and HVPE grown layers,” Phys. Stat. Sol. (c), Vol. 3, pp. 1499-1502, 2006.
[13] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak,” Appl. Phys. Lett., Vol. 85, pp. 5143-5145, 2004.
[14] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. Denbaars, S. Nakamura, and U. K. Mishra, “Demonstration of nonpolar m-plane InGaN/GaN light-emitting diodes on free-standing m-plane GaN substrates,” Jpn. J. Appl. Phys., Vol. 44, pp. L173-L175, 2005.
[15] A. Chakraborty, B. A. Haskell, H. Masui, S. Keller, J. S. Speck, S. P. Denbaars, S. Nakamura, and U. K. Mishra, “Nonpolar m-plane blue-light-emitting diode lamps with output power of 23.5 mW under pulsed operation,” Jpn. J. Appl. Phys., Vol. 45, pp. 739-741, 2006.
[16] M. M. C. Chou, H. C. Huang, D. S. Gan, and C. W. C. Hsu, “Defect characterizations of γ-LiAlO2 single crystals,” J. Crystal Growth, Vol. 291, pp. 485-490, 2006.
[17] X. Ke, X. Jun, D. Peizhen, Z. Yongzong, Z. Guoqing, Q. Rongsheng, and F. Zujie, “γ-LiAlO2 single crystal: a novel substrate for GaN epitaxy,” J. Crystal Growth, Vol. 193, pp. 127-132, 1998.
[18] K. Xu, J. Xu, P. Deng, R. Qiu, and Z. Fang, “MOCVD growth of GaN on LiAlO2 (100) substrates,” Phys. Stat. Sol. (a), Vol. 176, pp. 589-594, 1999.
[19] R. G. Wilson, B. L. H. Chai, S. J. Pearton, C. R. Abernathy, F. Ren, and J. M. Zavada, “Thermal stability of hydrogen in LiAlO2 and LiGaO2,” Appl. Phys. Lett., Vol. 69, pp. 3848-3850, 1996.
[20] Y. J. Sun, O. Brandt, U. Jahn, T. Y. Liu, A. Trampert, S. Cronenberg, S. Dhar, and K. H. Ploog, “Impact of nucleation conditions on the structural and optical properties of M-plane GaN (1-100) grown on γ-LiAlO2,” J. Appl. Phys., Vol. 92, pp. 5714-5719, 2002.
[21] J. Zou, Y. Dong, S. Zhou, Y. Sun, W. Jun, J. Zhou, T. Huang, S. Yang, and H. Zhou, “Study on the hydrolytic property and thermal stability of LiAlO2 substrate,” J. Crystal Growth, Vol. 294, pp. 339-342, 2006.
[22] Y. Dikme, P. van Gemmern, B. Chai, D. Hill, A. Szymakowski, H. Kalisch, M. Heuken, and R. H. Jansen, “Growth studies of GaN and alloys on LiAlO2 by MOVPE,” Phys. Stat. Sol. (c), Vol. 2, pp. 2161-2165, 2005.
[23] M. M. C. Chou, D. R. Hang, H. Kalisch, R. H. Jansen, Y. Dikme, M. Heuken, and G. P. Yablonskii, “ Crystal growth and properties of LiAlO2 and nonpolar GaN on LiAlO2 substrate,” J. Appl. Phys., Vol. 101, pp. 103106-1-103106-5, 2007.
[24] C. Liu, Z. Xie, P. Han, B. Liu, L. Li, J. Zou, S. Zhou, L. H. Bai, Z. H. Chen, R. Zhang, and Y. Zheng, “Two-step growth of m-plane GaN epilayer on LiAlO2 (100) by metal-organic chemical vapor deposition,” J. Crystal Growth, Vol. 298, pp. 228-231, 2007.
[25] T. Y. Liu, A. Trampert, Y. J. Sun, O. Brandt, and K. H. Ploog, “Microstructure of M-plane GaN epilayers grown on γ-LiAlO2 by plasma-assisted molecular beam epitaxy,” Philos. Mag. Lett., Vol. 84, pp. 435-441, 2004.
[26] B. G. Ren, J. W. Orton, T. S. Cheng, D. J. Dewsnip, D. E. Lacklison, C. T. Foxon, C. H. Malloy, and X. Chen, “Evidence for shallow acceptor levels in MBE grown GaN,” MRS Internet J. Nitride Semicond. Res., Vol. 1, 1996.
[27] E. Eiper, A. Hofmann, J. W. Gerlach, B. Rauschenbach, and J. Keckes, “Anisotropic intrinsic and extrinsic stresses in epitaxial wurtzitic GaN thin film on γ-LiAlO2 (100),” J. Crystal Growth, Vol. 284, pp. 561-566, 2005.
[28] P. Waltereit, O. Brandt, M. Ramsteiner, R. Uecker, P. Reiche, and K. H. Ploog, “Growth of M-plane GaN (1-100) on γ-LiAlO2 (100),” J. Crystal Growth, Vol. 218, pp. 143-147, 2000.
[29] P. P. Paskov, R. Schifano, T. Paskova, T. Malinauskas, J. P. Bergman, B. Monemar, S. Figge, and D. Hommel, “Structural defect-related emissions in nonpolar a-plane GaN,” Physica B, Vol. 376-377, pp. 473-476, 2006.
[30] R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, “Luminescence from stacking faults in gallium nitride,” Appl. Phys. Lett., Vol. 86, pp. 021908-1-021908-3, 2005.
[31] G. Salviati, M. Albrecht, C. Zanotti-Fregonara, N. Armani, M. Mayer, Y. Shreter, M. Guzzi, Y. V. Melnik, K. Vassilevski, V. A. Dmitriev, and H. P. Strunk, “Cathodoluminescence and transmission electron microscopy study of the influence of crystal defects on optical transitions in GaN,” Phys. Stat. Sol. (a), Vol. 171, pp. 325-340, 1999.
[32] P. Misra, Y. J. Sun, O. Brandt, and H. T. Grahn, “Polarization filtering by nonpolar M-plane GaN films on LiAlO2,” J. Appl. Phys., Vol. 96, pp. 7029-7035, 2004.
[33] B. Rau, P. Waltereit, O. Brandt, M. Ramsteiner, K. H. Ploog, J. Puls, and F. Henneberger, “ In-plane polarization anisotropy of the spontaneous emission of M-plane GaN/(Al,Ga)N quantum wells,” Appl. Phys. Lett., Vol. 77, pp. 3343-3345, 2000.
[34] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, “ Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy,” Phys. Rev. B, Vol. 65, pp. 075202-1-075202-7, 2002.
[35] P. Misra, Y. J. Sun, O. Brandt, and H. T. Grahn, “Polarization anisotropy and filtering for M-plane GaN films,” Phys. Stat. Sol. (c), Vol. 2, pp. 2704-2707, 2005.
[36] C. Rivera, P. Misra, J. L. Pau, E. Muñoz, O. Brandt, H. T. Grahn, and K. H. Ploog, “Intrinsic photoluminescence of M-plane GaN films on LiAlO2 substrates,” J. Appl. Phys., Vol. 101, pp. 053527-1-053527-6, 2007.
[37] H. T. Grahn and K. H. Ploog, “Polarization properties of nonpolar GaN films and (In,Ga)N/GaN multiple quantum wells,” Appl. Phys. A, Vol. 78, pp. 447-451, 2004.
[38] S. Ghosh, O. Brandt, H. T. Grahn, and K. H. Ploog, “Strained M-plane GaN for the realization of polarization-sensitive photodetectors,” Appl. Phys. Lett., Vol. 81, pp. 3380-3382, 2002.
[39] J. M. Myoung, K. H. Shim, C. Kim, O. Gluschenkov, K. Kim, S. Kim, D. A. Turnbull, and S. G. Bishop, “Optical characteristics of p-type GaN films grown by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett., Vol. 69, pp. 2722-2724, 1996.
[40] G. Ortner, M. Schwab, M. Bayer, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InxGa1-xAs/GaAs self-assembled quantum dots,” Phys. Rev. B, Vol. 72, pp. 085328-1-085328-7, 2005.
[41] H. Yu, L. K. Lee, T. Jung, and P. C. Ku, “Photoluminescence study of semipolar {10-11} InGaN/GaN multiple quantum wells grown by selective area epitaxy,” Appl. Phys. Lett., Vol. 90, pp. 141906-1-141906-3, 2007.
[42] A. K. Viswanath, J. I. Lee, C. R. Lee, J. Y. Leem, and D. Kim, “Optical properties of residual shallow donors in GaN epitaxial layers grown by horizontal LP-MOCVD,” Appl. Phys. A, Vol. 67, pp. 551-556, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊