跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳忠陽
研究生(外文):Chung-Yang Chen
論文名稱:n通道汲極延伸型金氧半場效電晶體其熱載子造成元件退化之分析
論文名稱(外文):Analysis of Hot-Carrier-Induced Device Degradation in n-type DEMOS Transistors
指導教授:陳志方
指導教授(外文):Jone-Fang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:59
中文關鍵詞:熱載子可靠度汲極延伸型金氧半場效電晶體
外文關鍵詞:reliabilityhot-carrierDEMOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是對n通道汲極延伸型金氧半場效電晶體(DEMOSFET)之元件特性,做熱載子可靠度的研究,分析元件參數的退化情形,更進一步探討造成元件退化的機制。
首先,會對高壓元件的應用做基本的描述與介紹,然後介紹實驗中各個參數的量測方法與步驟,並會敘述進行熱載子stress實驗的方法及其用意。
我們對元件進行定電壓熱載子stress實驗之後,觀察各個參數的退化情況,其中臨限電壓(Threshold voltage)這個參數的退化,有異常增加的現象,藉由charge pumping的實驗與分析、以及TCAD的模擬結果,我們可以對此異常退化的現象做詳細的討論與解釋。
再來,我們改變元件通道的尺寸,使其變小,再進行熱載子stress的實驗與分析,探討改變通道長度對元件可靠度造成的影響,並使用charge pumping量測與TCAD模擬的方法加以佐証,對此結構的元件,完成可靠度的實驗與分析。
In this thesis, device characteristics of n-type DEMOS transistors are investigated on hot carrier reliability. The degradation phenomenon of device parameters are analyzed, furthermore, the mechanism which causes device degraded are discussed.
There will be some basic introductions of HV devices and its application. It also shows all the parameters extracted from my experiments and measurement methodology. Then, the hot carrier stress methodology will be introduced.
After hot carrier stress experiment, the degradation phenomena of each parameter are observed. The degradation of threshold voltage has anomalous increase after stress. By means of charge pumping analysis and TCAD simulation, the phenomenon of anomalous degradation can be discussed and explained in detail.
The dimension of channel length is reduced, and then the experiment of hot carrier stress and analysis of degradation phenomena are performed. The effects of channel length on device reliability are investigated. The experiment results can be evidenced by charge pumping analysis and TCAD simulation. The experiment and analysis on reliability with the device used in this study will be accomplished.
Abstract (Chinese)......I
Abstract (English)....III
Acknowledgements........V
Contents...............VI
Figure Captions......VIII
List of Tables.........XI
Chapter 1 Introduction
1.1 Introduction to high voltage MOSFET............1
1.2 Introduction to hot carrier effect.............1
1.3 About the thesis...............................2
Chapter 2 Measurement Methodology & Device Characteristics
2.1 Introduction...................................7
2.2 Measurement methodology........................7
2.2.1 Measurement setup..........................7
2.2.2 Id-Vd measurement..........................7
2.2.3 Id-Vg measurement..........................8
2.2.4 VT extraction..............................9
2.3 Device description.............................9
2.4 Measurement results............................9
2.5 Summary.......................................10
Chapter 3 Analysis of hot carrier degradation phenomenon and mechanism
3.1 Introduction..................................18
3.2 Experiment methodology & Stress conditions....18
3.3 Experimental results..........................19
3.3.1 The worst degradation condition...........19
3.3.2 Anomalous degradation phenomenon..........19
3.3.3 Threshold voltage degradation mechanism...20
3.4 Charge pumping analysis.......................21
3.4.1 Charge pumping methodology................21
3.4.2 Experiment................................23
3.4.3 Experimental results and discussions......23
3.5 Discussions with I.I. and simulation..........24
3.6 Summary.......................................25
Chapter 4 Effects of shorter channel device on hot carrier reliability
4.1 Introduction..................................40
4.2 Experiment....................................40
4.3 Introduction to Kirk effect...................41
4.4 Experimental results..........................41
4.5 Discussion with charge pumping analysis.......42
4.6 Discussion with simulation....................43
4.7 Summary.......................................44
Chapter 5 Conclusion and future work
5.1 Conclusion....................................55
5.2 Future work...................................56
References........................................57
[1]C. Y. Tsai, et al., “16–60 V rated LDMOS show advanced performance in an 0.72 μm evolution BiCMOS power technology,” in IEDM Tech. Dig., pp. 367-370 (1997).
[2]V. Parthasarathy, et al., “A 33 V, 0.25 mΩ*cm2 n-channel LDMOS in a 0.65 μm smart-power technology for 20-30 V operation,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 61-64 (1998).
[3]J. A. Van der Pol, et al., “A-BCD: An economic 100 V RESURF silicon-on-insulator BCD technology for consumer and automotive applications,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 327-330 (2000).
[4]T. Terashima, et al., “Multi-voltage device integration technique for 0.5μm BiCMOS and DMOS process,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 331-334 (2000).
[5]Y. Kawagushi, et al., “0.6 μm BiCMOS-based 15 and 25 V LDMOS for analog applications,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 169-172 (2001).
[6]P. Moens, et al., “I3T80: A 0.35 μm based system-on-chip technology for 42 V battery automotive applications,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 225-228 (2002).
[7]Tahui Wang, Chimoon Huang, P. C. Chou, Steve S.-S. Chung, Tse-En Chang, “Effects of Hot Carrier Induced Interface State Generation in Submicron LDD MOSFET’s,” IEEE Tran. Elect. Dev., Vol. 41, No. 9 (1994).
[8]Y. Rey-Tauriac, J. Badoc, B. Reynard, R. A. Bianchi, D. Lachenal, A. Bravaix, “Hot-carrier reliability of 20V MOS transistors in 0.13 μm CMOS technology,” Microelectronics & Reliability, vol. 45, pp. 1349-1354 (2005).
[9]Philip L. Hower, “Safe Operating Area-a New Frontier in LDMOS Design, ” ISPSD, pp. 1-8 (2002).
[10]Zhilin Sun, Weifeng Sun, Longxing Shi, “A review of safe operation area,” Microelectronics Journal, pp. 1-7 (2005).
[11]Y. Nishioka, Y. Ohji, and T. Ma, “Gate-oxide breakdown accelerated by large drain current in n-channel MOSFET’s,” IEEE Elect. Dev. Lett., vol. 12, pp. 134-136 (1991).
[12]Kamakura, H. Utsunomiya, T. Tomita, K. Umeda, and K. Taniguchi, “Investigations of hot-carrier-induced breakdown of thin oxides,” IEDM Tech. Dig., Dec., pp. 81-84 (1997).
[13]A. W. Ludikhuize, M. Slotboom, A. Nezar, N. Nowlin, and R. Brock, “Analysis of hot-carrier-induced degradation and snapback in submicron 50V lateral MOS transistors,” ISPSD, pp. 53, 1997.
[14]M. S. Shekar, R. K. Williams, M. Cornell, M.-Y. Luo, and M. Darwish, “Hot electron degradation and unclamped inductive switching in submicron 60-V lateral DMOS,” IRPS, pp. 383, 1998.
[15]C. Y. Chang and S. M. Sze, “ULSI Technology,” (1996).
[16]Dieter K. Schroder, “Semiconductor Material and Device Characterization,” second edition.
[17]C. C. Cheng, K. C. Tu, and Tahui Wang, “Investigation of Hot Carrier Degradation Modes in LDMOS by Using A Novel Three-region Charge Pumping Technique,” IEEE IRPS, pp. 334-337 (2006).
[18]C. C. Cheng, J. F. Lin, T. Wang, T. H. Hsieh, J. T. Tzeng, Y. C. Jong, R. S. Liou, S. C. Pan, and S. L. Hsu, “Physics and characterization of various hot-carrier degradation modes in LDMOS by using a novel three-region charge pumping technique,” IEEE TDMR, vol. 6, NO. 3, pp. 358-362 (2006).
[19]S.M. Sze, “Physics of Semiconductor Device,” Wiley (1981)
[20]Ben G. Streetman, Sanjay Banerjee, “Solid state electronic device,” 5thed, Prentice Hall (2000)
[21]Yuan Taur, Tak h. Ning, ”Fundamentals of modern VLSI devices,” Cambridge (1998)
[22]A.W. Ludikhuize, “Kirk effect limitations in high voltage IC’s,” Proc. Int. Symp. Power Semiconductor Dev., pp.249 (1994)
[23]國立成功大學論文 “Development and Hot-Carrier Reliability Study of Integrated High-Voltage MOSFET Transistors,” Kuo-Ming Wu.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊