(18.210.12.229) 您好!臺灣時間:2021/03/03 17:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許庭禎
研究生(外文):Ting-Chen Hsu
論文名稱:氮化銦歐姆接觸特性及其表面處理之研究
論文名稱(外文):The Study of Ohmic Contact of InN and Surface Treatment
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:72
中文關鍵詞:表面處理氮化銦歐姆接觸蕭基特接觸特徵電阻
外文關鍵詞:Ohmic contactInNSchottky contactspecific contact resistancesurface treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們首先利用霍爾量測、原子力顯微鏡、X光繞射及掃描式電子顯微鏡研究氮化銦磊晶層之電學及光學特性,其中可以發現氮化銦之電學參數是相當特別且優異,但由掃描式電子顯微鏡可觀察出其剛成長完成之氮化銦其表面卻存在著不少像洞穴似缺陷。
接著分別利用熱蒸鍍機、電子束蒸鍍機及射頻濺鍍機沉積鈦、鋁、鎳、金、鉑、銀、釕(Ru)、銦錫氧化物(ITO) 、鎢化鈦藉以探討其接觸特性,不同金屬之歐姆特性已被量測並計算得出,其中最低特徵觸電阻為2.11×10-7 ohm-cm2於氮氣環境下鋁回火400oC,此外我們製作並量測出最大之特徵觸電阻為5.14×10-4 ohm-cm2於氮氣環境下釕回火500oC。
另一方面,研製蕭基特接觸於氮化銦薄膜是非常困難去實現,因此利用四種不同方式之表面處理去探討其結果:金屬-絕緣體-半導體結構、異質接面結構、化學表面處理和熱回火處理。金屬-絕緣體-半導體結構之絕緣層薄則易導致電流穿透,厚則轉變為電容特性。異質結構回火後雖有蕭基特能障,但其特性不明顯。然而化學表面處理之鹽酸及硫化銨之抑制高載子濃度有限,乙醇基之氫氧化鉀可使氮化銦片濃度降低至6.85×1014 cm-2,但其浸泡於沸騰之乙醇基之氫氧化鉀30分鐘後,電子移動率卻呈指數型退化由1130衰減至70.9 cm2/V-s。最後之回火熱處理,適當回火將改善氮化銦之晶格品質及電學特性,然而回火溫度若過高將會使氮化銦氧化更甚者解離。
In this dissertation, we first study the basic electrical and optical properties of InN epilayer by hall measurement, atomic force microscope (AFM), X-ray Diffraction (XRD) and scanning electron microscope (SEM). Electrical properties on InN epilayer are excellent and unusual. The surface of as-grown InN epilayer persist many defects like holes naturally by SEM.
Contact properties with Ti, Al, Ni, Au, Pt, Ag, Ru, ITO and TiW using thermal evaporation, E-gun and RF sputter have been investigated. Ohmic properties of variable metals contact on InN films were obtained and the lowest specific contact resistance of 2.11×10-7 ohm-cm2 were investigated with Al 400oC N2 annealing. Besides, we achieved the largest specific contact resistance is 5.14×10-4 ohm-cm2 with Ru contact annealed 500oC.
On the other hand, developing schottky contact on InN thin film is extremely difficult to accomplish. Four kinds of surface treatments have been studied: MIS structure, hetero-junction, chemical surface treatment and annealing effect. MIS structure with thinner insulator would lead current tunnel easily, with thicker insulator would turn into capacitance characteristics by I-V measurement. Hetero-junction does carry out schottky barrier, but not obviously. With chemical surface treatment, HCl and (NH4)2Sx on InN films in electrical properties are limited to lower carrier concentration. Alcohol-based KOH would make InN degrade because of forming the defects with etching. The lowest sheet carrier concentration we achieved is 6.85×1014 cm-2, but hall mobility exponential decayed from 1130 to 70.9 cm2/V-s with boiled alcohol-based KOH in 30 min. The last treatment is annealing effect. Annealing on InN films would improve InN crystalline quality and electrical properties with appropriate temperature. However, if annealing temperature is too high, InN would oxidation and dissociation.
Abstract (in Chinese) I
Abstract (in English) III
Acknowledgement V
Contents VII
Table Captions IX
Figure Captions X

Chapter 1 Introduction 1
1-1. The background of InN materials 1
1-2. Organization of this dissertation 4

Chapter 2 Fabrication System and Measurement Theory 10
2-1. RF Sputtering System 10
2-2. Measurement of barrier height 11
2-2-1. Capacitance-Voltage (C-V) Measurement 11
2-2-2. Current-Voltage (I-V) Measurement 12
2-2-3. Photoelectric Measurement 13
2-3. Auger Emission Spectroscopy (AES) System 14
2-4. Hall Measurement System 15

Chapter 3 Material Analysis and Contact Properties of InN 20
3-1. Fabrication and Material Analysis of InN
films 21
3-2. Metal-Semiconductor contact properties 23
3-2-1. Schottky contact behavior 25
3-2-2. Ohmic contact behavior 25
3-3. Characteristics of contact properties
on InN films 26
3-3-1. Analysis of circular transmission line
method (CTLM) 27
3-3-2. Fabrication of CTLM pattern with various
metals 29
3-3-3. Analysis of variable electrodes on InN 30
3-4. Summary 31

Chapter 4 Characteristics of surface treatment on InN 45
4-1. Motivation and introduction of surface
treatment on InN films 46
4-2. Experiment and analysis of surface treatment
on InN 46
4-2-1. Inserting an insulator 47
4-2-1. Hetero-junction 47
4-2-2. Chemical surface treatment 48
4-2-3. Annealing effect 50
4-3. Summary 51

Chapter 5 Conclusion and Future Work 69
5-1. Conclusion 69
5-2. Future Work 71
Chapter 1
[1] H. J. Hovel and J. J. Cuomo, Appl. Phys. Lett., Vol. 20, pp. 71, 1972.
[2] K. Osamura, K. Nakajima, Y. Murakami, H. P. Shingu, and A. Ohtsuki, Solid State Commun., Vol. 11, pp. 617, 1972.
[3] K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys., Vol. 46, pp. 3432, 1975.
[4] S. N. Mohammad and H. Morkoc, Prog. Quantum Electron, Vol. 20, pp. 361, 1996.
[5] V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys., Vol. 75, pp. 7365, 1994.
[6] E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, J. Appl. Phys., Vol. 5, pp. 916 , 1999.
[7] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys., Vol. 85, pp. 7727, 1999.
[8] T.L. Tansley, C.P. Foley, J. Appl. Phys., Vol. 59, pp. 3241, 1986.
[9] J. Hovel, J.J. Cuomo, Appl. Phys. Lett., Vol. 20, pp.71, 1972.
[10] K. Osamura, S. Nara, Y. Murakami, J. Appl. Phys., Vol. 46, pp. 3432, 1975.
[11] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett., Vol. 81, pp. 1246, 2002.

[12] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett., Vol. 80, pp. 3967, 2002.
[13] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff., J. Appl. Phys., Vol. 94, pp. 4457, 2004.
[14] S. P. Fu and Y. F. Chen, Appl. Phys. Lett., Vol. 85, pp. 1253, 2002.
[15] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J., Phys. Rev. B, Vol. 66, pp. 201403, 2002.
[16] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J., Appl. Phys. Lett., Vol. 80, pp. 4741, 2002.
[17] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells, Vol. 35, pp. 53, 1994.
[18] E. Dimakis, E. Iliopoulos, and K. Tsagaraki, Th. Kehagias and Ph. Komninou, A. Georgakilas, J. Appl. Phys., Vol. 97, pp. 113520, 2005.
[19] Hai Lu, William J. Schaff, and Lester F. Eastman, C. E. Stutz, Appl. Phys. Lett., Vol. 82, pp. 1736, 2003.
[20] N. C. Chen, P. H. Chang, Y. N. Wang, H. C. Peng, W. C. Lien, C. F. Shih, Chin-An Chang, and G. M. Wu, Appl. Phys. Lett., Vol. 87, pp. 21211, 2005.
[21] Rohit Khanna, B. P. Gila, L. Stafford, S. J. Pearton, F. Ren, I. I. Kravchenko, Appl. Phys. Lett., Vol. 90, pp. 162107, 2007.
[22] H. Lu, W. J. Schaff, L. F. Eastmanl, J. Wu, W. Walukiewicz, D. C. Look, and R. J. Molnar, Mat. Res. Soc. Symp. Proc., Vol. 743, pp. L4.10, 2003.
[23] Je Won Kim , Kyu Han Lee, Sangsu Hong, Thin Solid Films, Vol. 515, pp. 4405, 2007.
[24] Yu-Syuan Lin, Shun-Hau Koa, Chih-Yuan Chan, Shawn S. H. Hsu, Hong-Mao Lee and Shangjr Gwo, Appl. Phys. Lett., Vol. 90, pp. 142111, 2007.
[25] Elaissa Trybusa, Gon Namkoonga, Walter Hendersona, Shawn Burnhama, W. Alan Doolittlea, , Maurice Cheungb, Alexander Cartwright, J. Cry. Grow., Vol. 288, pp. 218, 2006.
[26] Ashraful Ghani Bhuiyan, Akihiro Hashimoto, Akio Yamamoto, J. Appl. Phys., Vol. 94, pp. 2779, 2003.

Chapter 2
[1] J. L. Vossen and W. Kern, “Thin Flim Processes”, Academic Press, New York, pp. 131, 1978.
[2] C. Y. Chang and S.M. Sze, “ULSI Technology”, McGraw-Hill, New York, pp. 380, 1996.
[3] S. I. Shah, “Handbook of Thin Film Process Technology”, Institute of Physics Pub, Bristol, UK, pp. A3.0:1, 1995.
[4] S. M. Sze, “VLSI Technology”, McGraw-Hill, New York, pp. 387, 1978.
[5] Chien-Ming Wang, “Materials Analysis”, C.S.M.S , 1998
[6] A. M. Goodman, J. Appl. Phys, Vol. 34, pp. 329, 1963.
[7] R. H. Fowler, Phys. Rev, Vol. 38, pp. 45, 1931.
[8] S. M. Sze, “Physics of Semiconductor Devices”, 1981 (New York: Wiley).

Chapter 3
[1] Z.L. Xie, R. Zhang, B. Liu, L. Li, C.X. Liu, X.Q. Xiu, H. Zhao, P. Han, S.L. Gu, Y. Shi, Y.D. Zheng, J. Cry. Grow. , Vol. 298, pp. 409, 2007.
[2] T. Matsuoka et al., Proc. SPIE, Vol. 6473, pp. 647302-1, 2007.
[3] J. Wu, W. Walukiewicz, W. Shan, K. M. Wu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, J. Appl. Phys., Vol. 94, pp. 4457 , 2003.
[4] W. Walukiewicz et al., Physica (Amsterdam), Vol. 302B, pp. 123 2001.
[5] R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz,1 J.W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, Phys. Rev. Lett. , Vol. 96, pp. 125505, 2006.
[6] Jia-Chin Lin, “The study of III-nitride semiconductors and related optoelectronic devices grown by metal organic vapor phase epitaxy”, Doctoral Dissertation of NCKU, 2008.
[7] K. A. Wang, Yu Cao, John Simon, J. Zhang, Alexander Mintairov, James Merz, Douglas Hall, Thomas Kosel, and Debdeep Jena. Appl. Phys. Lett., Vol. 89, pp. 162110, 2006.
[8] M. Kuball, Surf. Interface Anal., Vol. 31, pp. 987, 2001.
[9] Y. Nanishi, Y. Saito, T. Yamaguchi, T. Araki, T. Miyajima, and H. Naoi, phys. stat. sol., Vol. 6, pp. 1487, 2003.
[10] G. Kaczmarczyk et al. , Appl. Phys. Lett., Vol. 76, pp. 2122, 2000.
[11] A. J , M. C. Evoy , W. Gissler , J. Appl. Phys. , Vol. 53, pp. 1251 ,1982.
[12] K. Fukumi, A. Chayahara, M. Makihara, K. Fujii, J. Hayakawa, , M. Satou, Appl. Phys. Lett., Vol 64, pp. 3410, 1994.
[13] Reeves GK., Solid- State Electron, Vol. 23, pp. 487, 1980.
[14] H.H. Berger, Solid-State Electron, Vol.15, pp. 145, 1972.
[15]S.S. Cohen and G.Sh. Gildenblat, VLSI Electronics, Vol.13, pp. 115, 1986.
[16] J. Klootwijk, Philips Research Labs., private communication.
[17] Rohit Khanna, B. P. Gila, L. Stafford, and S. J. Pearton, Appl. Phys. Lett., Vol. 90, pp. 162107, 2007.
[18] S. M. Sze, “Physics of Semiconductor Devices”, 1981 (New York: Wiley)

Chapter 4
[1] S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu,
S. C. Shei, and Y. Z. Chiou, Electrochemical and Solid-State Letters, Vol. 10, pp. H175, 2007.
[2] Chun-Kai Wang, “The study of nitride-based optoelectronic and microwave devices”, Doctoral Dissertation of NCKU, 2005.
[3] Y. Z. Chiou, S. J. Chang, Y. K. Su, IEEE Trans. Electron Dev., Vol. 03, pp. 01, 2003.
[4] Fabio Sacconi, Aldo Di Carlo, P. Lugli, and Hadis Morkoç, IEEE Trans. Electron Dev., Vol. 48, pp. 450, 2001.
[5] Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. Vol. 63, pp. 1214, 1993.
[6] F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Appl. Phys. Lett. Vol.69, pp. 1438, 1996.
[7] Hai Lu, William J.Schaff, and Lester F. Eastman, J. Appl. Phys., Vol. 96, pp. 3577, 2004.
[8] T. Maruyama, K. Yorozu, T. Noguchi, Y. Seki, Y. Saito, T. Araki, Y. Nanishi, Phys. Satat. Sol. (c). Vol. 07, pp. 2031, 2003.
[9] C.L. Wu, C.-H. Shen, H.Y. Chena, S.-J. Tsai, H.W. Lin, H.M. Lee, S. Gwo, T.-F. Chuang, H.-S. Chang, T.M. Hsu, J. Cry. Grow. Vol. 288, pp. 247, 2006.
[10] W.-H. Lan, K.-C. Huang and K.F. Huang, Electronics letters 6th, Vol. 42, pp. 14, 2006.
[11] Chi-Fan Chen, Chung-Lin Wu, and Shangjr Gwo, Appl. Phys. Lett. Vol. 89, pp. 252109, 2006.
[12] Ching-Ting Lee, Yow-Jon Lin, and Day-Shan Liu, Appl. Phys. Lett.Vol. 79, pp. 2573, 2001.
[13] L. Cao, Z. L. Xie, B. Liu, X. Q. Xiu, R. Zhang, Y. D. Zheng, J. Vac. Sci. Technol. B., Vol. 25, pp 199, 2007.
[14] Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio Yamamoto, J. Appl. Phys., Vol. 94, pp 2779, 2003.

Chapter 5
[1] Yu-Syuan Lin, Shun-Hau Koa, Chih-Yuan Chan, and Shawn S. H. Hsu, Appl. Phys. Lett., Vol. 90, pp. 142111, 2007.
[2] Je Won Kim , Kyu Han Lee, Sangsu Hong, Thin Solid Film, Vol. 515, pp. 4405, 2007.
[3] T. Yamaguchi, C. Morioka, K. Mho, M. Hori, T. Araki and Y. Nanishi, IEEE CNF, pp 214-219, 2003.
[4] L.C. Chen, Eur. Phys. J. Appl. Phys., Vol. 35, pp. 13, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔