跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家禎
研究生(外文):Chia-Chen Chang
論文名稱:新穎垂直式有機雙極性電晶體應用於高增益光感測之研究
論文名稱(外文):A Novel Vertical Type Organic Bipolar Junction Transistor for High Gain Photo-Detecting Applications
指導教授:方炎坤方炎坤引用關係
指導教授(外文):Yean-Kuen Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:120
中文關鍵詞:摻雜五環素醋酸鈉垂直式
外文關鍵詞:XRDdopingPentacene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係利用摻雜的有機材料五環素(Pentacene)薄膜首次研製垂直式雙極性電晶體應用在光感測上。利用SEM、AFM及XRD來檢視摻雜與無摻雜有機薄膜的表面結晶形態與程度;EDS和α-step分析表面成分與厚度;FTIR與PL來偵測鍵結位置及能隙大小,並藉由量測二極體特性來判定薄膜正負性及利用薄膜成長參數研究對光暗電流及增益值的影響。實驗結果顯示,加入鈉、碘的摻雜確實能使有機材料產生錯合物形成.使薄膜類似無機半導體具有正、負型整流之特性曲線。研製的垂直式有機異質接面雙極性電晶體 (PNP、NPN) 結構為Metal/EIL(HIL)/Doped-PEN/EIL(HIL)/Doped-PEN/c-Si/Metal。在NPN電晶體,以醯銨鈉掺雜作為N層的時,常溫及Vbe=30V偏壓下,在不照光時在電流增益為β=3.7,但照光後之增益變成β=34;而以醋酸鈉掺雜作為N層時,在不照光之電流增益達β=4.46,照光後電流增益改變為β=75。吾人認為電流益的不同應與摻雜材料有關,而光電流增益則與增加的電子電洞對有關並提出一模式來解釋
In this thesis, for the first time, we developed a novel vertical type organic bipolar junction transistor for high gain photo-detecting applications by modulating the Pentacene organic thin films’ conductivity and carrier type with NaNH2 and CH3COONa for N type dopant. We used SEM, AFM, and XDR to inspect morphology and crystallization of the organic films; EDS and α-step to analyze the surface component and film thickness. In addition, FTIR and PL were employed for bonding location and band gap, respectively. The Schottky and ohmic characteristics of the organic/Si heterojunctions (pn and np) were examined by I-V measuring. Besides, the vertical type organic structure Metal/EIL(HIL)/doped- Pentacene/EIL(HIL)/ doped-Pentacene/Si-substrate/Metal hetero-junction bipolar phototransistors(PNP and NPN) were prepared and their DC I-V curves with and without light irradiation were also measured. Without light irradiation, the current gains of the NPN bipolar transistors were 3.7, and 4.46 with NaNH2, and CH3COONa as dopant, respectively, while under light illumination, the β were raised to 34, and 75, respectively. We suspect the dark current gain is related to dopant, while the photo current gain is dominated by the extra electron hole pairs after light illumination in both Si substrate and organic thin films. We developed a model to interpret these phenomena.
中文摘要 I
英文摘要 III
目錄 V
圖表目錄 VII
第一章、導論 1
1-1前言 1
1-2 有機半導體的簡介 2
1-3研究動機 3
第二章、有機元件理論基礎與工作原理 5
2-1有機材料的特性 5
2-1-1吸收和放射 5
2-1-2 電荷在有機分子的傳遞 7
2-2 元件電流限制 8
2-2-1 電荷注入 8
2-2-2 電荷傳播 10
2-3 電荷注入與傳遞材料介紹 16
2-3-1陰極材料與陽極材料 16
2-3-2 電洞注入(HIL)、電洞傳輸(HTL)層P型摻雜原理 17
2-3-3 電子注入(EIL)、電子傳輸(ETL)層N型摻雜原理 18
2-4 正負型二極體元件結構與其工作原理 19
2-5 雙極性電晶體元件結構及工作原理 21
2-5-1 雙極性電晶體元件結構 21
2-5-2 雙極性電晶體工作原理---主動操作模式 22
2-5-3 雙極性電晶體工作原理---電流增益 22
2-5-4 雙極性電晶體共基極與共射極組態下的電流電壓特性 23
第三章、成長系統與製備流程以及薄膜量測方法 25
3-1 成長系統 25
3-1-1 真空熱蒸鍍系統設備(Thermal Vacuum Evaporation System) 25
3-1-2 退火系統(Annealing System) 26
3-2實驗材料 26
3-3 有機正負型二極體元件製備流程 27
3-3-1 矽基板清洗 27
3-3-2 有機薄膜沉積步驟 28
3-4垂直有機雙極性光電晶體元件製備流程 29
3-4-1 矽基板清洗 29
3-4-2 有機薄膜沉積 29
3-5量测儀器及原理簡介 31
3-5-1掃描式電子顯微鏡 (Fe-SEM) 31
3-5-2原子力顯微鏡 (AFM) 31
3-5-3傅立葉光譜儀(FTIR) 32
3-5-4 Photoluminescence 32
3-5-5 α- step 33
3-5-6 XRD 結構分析 33
第四章 實驗結果與討論 35
4-1 醋酸鈉及醯氨鈉摻雜五環素有機薄膜之特性分析 36
4-1-1不同溫度與倍率有機薄膜摻雜之XRD表面結晶度分析 36
4-1-2 改變製程溫度之SEM與AFM薄膜分析 37
4-1-3 改變摻雜倍率SEM、AFM與ESD分析 40
4-1-4 不同倍率有機薄膜鈉摻雜之PL、FTIR鍵結分析 41
4-1-5 不同鈉摻雜倍率對有機薄膜之α-step 厚度分析 42
4-2 鈉摻雜與五環素有機正負型薄膜之二極體電流-電壓特性分析 43
4-2-1五環素有機薄膜摻雜鈉於N型矽基板上之電流-電壓特性分析 45
4-2-2 五環素摻雜碘之有機薄膜於N型矽基板上之電流-電壓特性分析 47
4-3 垂直結構有機雙極性電晶體之電流-電壓特性分析 48
4-3-1 NPN、PNP 鈉掺雜有機雙極性電晶體對光照射下之電流-電壓特性分析 49
第五章、結論與未來展望 52
5-1 結論 52
5-2 未來展望 53
參考文獻 55
[1] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting diodes using TPD derivates with diphenylstylyl groups as hole transport layer”, Thin Solid Films, vol.363, pp.33-36 (2000).
[2] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, ”Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer”, Appl. Phys. Lett. vol.83, pp.1038-1040 (2003).
[3] 陳壽安,物理雙月刊, 23(2),312,2001.
[4] H. Shirakawa , C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger,E. J. Louis, S. C. Gau and A. G. MacDiarmid, “Limits for Metallic Conductivity in Conducting Polymers” Phys. Rev.Lett. 39,1098, (1997).
[5] Z. Bao, A. Dodabalapur, and A. J. Lovinger, ”Soluble and processableregioregular poly (3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Appl. Phys. Lett. vol.69, pp.4108-4110 (1996).
[6] Yanbo Jin, Zhenlin Rang, Marshall I. Nathan, P. Paul Ruden, Christopher R. Newman, and C. Daniel Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer”, Appl. Phys. Lett. vol.85, pp.4406-4408 (2004).
[7] D. J. Gundlach, Y. Y. Lin,T. N. Jackson, S. F. Nelson, an D. G. Schlom , “Solvent-induced phase transition in thermally evaporated pentacene films”, Appl. Phys. Lett. vol.74, pp.3302 (1999).
[8] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw , ” Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, vol.401, pp.685, (1999).
[9] T. H. Chou, S. F. Chen, Y. K. Fang, S. C. Hou, F. S. Lin, and C. Y. Lin, “Significantly Improved Luminance of Organic Light-Emitting Diodes by Doping Iodine and Nitrogen Treatment”, Japanese Journal of Applied Physics, Vol.46, pp.2753-2757 (2007).
[10] F. Huang, A. G. MacDiarmid, and B. R. Hsieh, “An Iodine-doped polymer light-emitting diode”, Appl. Phys. Lett. Vol.71, pp.2415-2417 (1997).
[11] C. K. Chiang, S. C. Gau, C. R. Fincher, Jr., Y. W. Park, A. G. MacDiarmid, and A. J. Heeger, “Polyacetylene, (Ch)x: N-type and p-type doping and compensation”, Appl. Phys. Lett. Vol.33, PP.18-20 (1978).
[12] 陳金鑫,黃孝文,”有機電激發光材料與元件”,五南圖書出版公司, (2006).
[13] Y. -Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, “Pentacene Organic Thin-Film Transistors – molecular Ordering and Mobility” , IEEE Electron. Device Lett. Vol.18, NO.3,PP.87-89 (1997).
[14] S. S. Kim, Y. S. Choi, Kibum Kim, J. H. Kim, and Seongil Im, “Fabrication of p-pentacene/n-Si organic photodiodes and Characterization of their photoelectric properties”, Appl. Phys. Lett. vol.82, pp.639-641, (2003).
[15] Jiyoul Lee, S. S. Kim, Kibum Kim, Jae Hoon Kim, and Seongil Im, “Correlation between photoelectric and optical absorption spectra of thermally evaporated pentacene films”, Appl. Phys. Lett. vol.84, pp.1701-1703, (2004).
[16] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett. vol.48, pp.183-185, (1986).
[17] J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, M. Pfeiffer, “High efficiency organic solar cells based on single or multiple PIN structures”, Thin Solid Films, vol.451-452, pp.515-517, (2004).
[18] S. P. Park, S. S. Kim, J. H. Kim, C. N. Whang, and S. Im, “Optical and luminescence characteristics of thermally evaporated pentacene films on Si”, Appl. Phys. Lett. vol.80, pp.2872-2874, (2002).
[19] D. A. Neamen, Semiconductor Physics & Devices, 2nd Ed., p. 319.
[20] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981 ).
[21] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor-Contacts (Clarendon, Oxford, 1988).
[22] A. J. Champbell and D. D. C. Bradley, J Laubender, M Sokolowski, “Thermally activated injection limited conduction in single layer N,N-diphenyl-N,N-bis(3-methylphenyl)1-1-biphenyl-4,4-diamine light emitting diodes ”, J. Appl. Phys. 86, p.5004(1999).
[23] I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov,and J. P. Ferraris, “The Schottky energy barrier dependence of charge injection in organic light-emitting diodes”, Appl. Phys. Lett. 72, p.1863 (1998).
[24] P. S. Davids, I. H. Campell, and D. L. Smith, “Device model for single carrier organic diodes”, J. Appl. Phys. 82, p.6319 (1997).
[25] R. H. Fowler and L. Nordheim, “Electron transmission in intense electric fields”, Proc. R. Soc. London Ser. A 119, p.173 (1928).
[26] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, “Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes”, J. Appl. Phys. 77, p.694 (1995).
[27] H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz, and H. Bässler, “Majority carrier injection from ITO anodes into organic light-emitting diodes based upon polymer blends” , Synth. Met. 68, p.263 (1995).
[28] P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith, “Charge i njection in organic light‐emitting diodes: Tunneling into low mobility materials”, Appl. Phys. Lett. 69, p.2270 (1996).
[29] Yulong Shen, Matthias W. Klein , Daniel B. Jacobs, J. Campbell Scott , and George G. Malliaras, ”Mobility-Dependent Charge Injection into an Organic Semiconductor”, Phys. Rev. Lett. 86, 3867 - 3870 (2001).
[30] PS Davids, SM Kogan, ID Parker, DL Smith,“ Charge injection in organic light‐emitting diodes: Tunneling into low mobility materials ” , Appl. Phys. Lett. 69, 2270 (1996).
[31] A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly (phenylene vinylene) light emitting diodes ” , J. Appl. Phys. 82, p.6326 (1997).
[32] D. Ma, I. A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F. E. Karasz, “ Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio”, J. Appl. Phys. 87, 312 (2000).
[33] L Bozano, SA Carter, JC Scott, GG Malliaras, ”Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes”, Appl. Phys. Lett. 74, 1132 (1999).
[34] H. C. F. Martens, J. N. Huiberts, and P.W. M. Blom, “Simultaneous measurement of electron and hole mobilities in polymer light-emitting diodes“, Appl. Phys. Lett. 77, p.1852 (2000).
[35] P. W. M. Blom and M. C. J. M. Vissenberg , ”Charge transport in poly (p-phenylene vinylene) light-emitting diodes” , Mat. Sci. & Eng. 27, p.53 (2000).
[36] P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth. Met. 121, p.1621 (2001).
[37] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, “Consistent time-of-flight mobility measurements and polymer light-emitting diode current–voltage characteristics”, Appl. Phys. Lett. 74, p.2809 (1999).
[38] K. Unger, Phys. Stat. Sol. 2, p.1279 (1962).
[39] J. G. Simmons and M. C. Tam, ” Thermoreflectance Spectra and Energy Band Structure ”, Phys. Rev. B 7, p.3706 (1973).
[40] A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C. Bradley, “Bulk limited conduction in electroluminescent polymer devices “, J. Appl. Phys. 84, p.6737 (1998).
[41] S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, “Extrinsic photoconductivity in poly (3-dodecylthiophene) sandwich cells”, Phys. Rev. B 61, p.2151 (2000).
[42] C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E.Thompson, S. R. Forrest, and R. A. Register, “Poly (p‐phenylene vinylene)/tris (8‐hydroxy) quinoline aluminum heterostructure light emitting diode”, Appl. Phys. Lett.66, p.653 (1995).
[43] G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. Samuel, A. P.Monkman, and M. C. Petty, “ The effect of insulating spacer layers on the electrical properties of polymeric Langmuir-Blodgett film light emitting device ”, J. Phys. D: Appl. Phys. 33, p.1029 (2000).
[44] Y.Qiu, Y. Gao, L. Wang, , D Zhang , “Efficient light emitting diodes with Teflon buffer layer “, Synth Met. 130, p.235 (2002).
[45] Z. B. Deng, X. M. Ding, S.T. Lee, WA Gambling ,”Enhanced brightness and efficiency in organic electroluminescent devices using SiO buffer layers “, Appl. Phys. Lett.74, p.2222(1999).
[46] C. H. Chen, C. W. Tang, J. Shi,” Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence”, Thin Solid Films, 363, p.327 (2000).
[47] S.Naga,M. Tamekawa,T. Terashita, H. Okada, H. Anada, H. Onnagawa, Synth.Met. 91,129(1997).
[48] T. Ishida,H. Kobayashi, Y. Nakato, ”Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements”, J.Appl. Phys. 73,4344(1993).
[49] S. K. So, W. K.Choi, C.H. Cheng, L. M.Leung, C.F.Kwong,” Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices”, Appl. Phys. A,68,447(1999).
[50] S. A. VanSlyke, C.H. Chen, C.W.Tang, ”Organic electroluminescent devices with improved stability“, Appl. Phys. Lett. 69, 2160 (1996).
[51] T. Wakimoto, Y, Fukuda, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, “Organic EL Cells Using Alkaline Metal Compounds as Electron Injection Materials”, IEEE Trans. Electron. Devices , vol. 44, NO. 8, PP.1245-1248, (1997).
[52] C. Ganzorig, M. Fujihira, “Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition”, Appl. Phys. Lett. vol.85, PP.4774-4776,(2001).
[53] J. Kido, T. Matsumoto , “Bright organic electroluminescent devices having a metal-doped electron-injecting layer”, Appl. Phys. Lett.vol.73, PP.2866-2868,(1998).
[54] J. M. Shannon, “A majority-carrier camel diode”, Appl. Phys. Lett. vol.35, pp.63-65, (1979).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top