跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李紹平
研究生(外文):Shao-Ping Li
論文名稱:利用PE-CVD以疊層(Layer-by-Layer)技術在玻璃基板上成長奈米複晶矽鍺能障型光電晶體之研究
論文名稱(外文):The Study of nc-SiGe Bulk Barrier Phototransistor Prepared by PECVD with Layer-by-Layer(LBL) Technology
指導教授:方炎坤方炎坤引用關係
指導教授(外文):Yean-Kuen Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:78
中文關鍵詞:奈米複晶矽鍺光電晶體
外文關鍵詞:phototransistornc-SiGe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用PECVD疊層技術,利用氫原子電漿處理技術打斷通入SiH4及GeH4的Si、Ge之鍵結,進而結合成奈米複晶矽鍺薄膜。並利用FESEM、AFM觀察薄膜的表面狀態,使用Raman spectra、FTIR等儀器分析薄膜的結晶品質,以及使用PL來量測其吸收光譜。
本文主要的內容在研製在玻璃基板上以nc-SiGe為材料所成長的能障型光電晶體,並探討其照光及不照光之電性。此元件因基極層的P型薄膜非常薄,在不照光時,任何偏壓下P層內都無自由載子。且電流能藉由外加偏壓改變的能障來控制,以加速元件的交換速率。又在照光下,因光激電洞在能障區堆積,使得能障高度下降,導致大量的電子由射極放射至集極,而產生大的光電流。
此外,我們討論了元件在未照光與照光下的I-V特性、光增益、光譜響應及響應速度等。在VCE等於5V時以波長700nm,5mW之雷射光照射下可得到的最大光增益為25;響應速度的上升時間可達10μs,下降時間則為10μs。這些結果比起非晶矽能障型光電晶體的光增益為3.2;響應速度的升降時間為30μs[27],本元件更適合作為高增益且高速的紅外線光感測器之用。
In this thesis, we used layer-by-layer method (LBL), to develop nc-SiGe phototransistor on glass substrate. The LBL method takes the advantage of hydrogen plasma annealing to break the bonds within Si and Ge compound, thus growing the nc-SiGe thin films effectively. Firstly, we investigated physical, optical and electrical characteristics of the films by FE-SEM, AFM, Raman spectrum, Photoluminescence, respectively to optimize the depositing parameters. Then the optimized parameters were employed to prepare nc-SiGe bulk barrier phototransistors on glass substrate.
The device has an ultra thin base layer, so that the current flow is controlled by the potential barrier of the device. Through an external voltage, one can control the barrier height to speed the operation of device. In addition, under illumination, the photo generated holes are accumulated in the potential valley (at the base region), thus lowering the barrier height, and resulting a lot of electrons inject from emitter to collector, and in turn a large photo current.
Furthermore, we investigated the I-V characteristics of the device with and without the illumination of an infrared light source. Optical gain, spectrum response, and response speed were be measured. At 5V VCE bias, and under 5mW at λ=700nm laser diode illuminated, the maximum optical gain is 25; the response speed for rise time is 10μs, and 10μs for fall time. These data are better than 3.2 for optical gain, and 30μs for response time of the amorphous Silicon bulk barrier phototransistors, thus the developed. Thus, the developed nc-SiGe bulk barrier phototransistors device is more suitable for high gain and high speed infrared photo detecting applications.
中文摘要 I
英文摘要 III
目錄 V
圖表目錄 VIII
第一章 導論 1
1-1 前言 1
1-2 研究動機 2
1-3 論文架構 5
第二章 成長及量測系統與元件製程 6
2-1 成長系統 6
2-2 基板之清潔(Wafer Clean) 6
2-2-1 矽基板之清潔 6
2-2-2 玻璃基板之清潔 7
2-3 電漿助長化學氣相沉積系統(PECVD) 7
2-4 真空蒸著系統(Thermal Vacuum Evaporation System) 9
第三章 奈米複晶矽鍺薄膜之製作與量測分析 10
3-1 奈米複晶矽鍺成長模型 10
3-2 奈米複晶矽鍺成長步驟 10
3-3 量测儀器及原理簡介 11
3-3-1 掃描式電子顯微鏡 (FE-SEM) 11
3-3-2 原子力顯微鏡 (AFM) 12
3-3-3 α-step 12
3-3-4 拉曼光譜儀 (Raman) 12
3-3-5 傅立葉光譜儀 (FTIR) 13
3-3-6 光致螢光(Photoluminescence) 13
3-3-7 歐傑電子光譜儀(AES) 13
3-4 奈米複晶矽鍺薄膜的表面結構與特性分析 14
3-4-1 微表面結構 14
3-4-2 成份分析 15
3-4-3 結晶度 16
3-4-4 原子鍵結 16
3-4-5 光電特性 16
第四章 奈米複晶矽鍺能障型光電晶體之製程與傳導理論 18
4-1 光電晶體基本介紹 18
4-2 元件結構 18
4-3 製程步驟 19
4-4 不照光時的電流傳導 19
4-5 照光情況下的電流傳導 24
4-5-1 集極區的光激載子 24
4-5-2 射極未摻雜層中的產生電流及復合電流 25
4-5-3 在薄基極區的復合電流 26
4-5-4 在E-B接面的擴散電流 27
4-5-5 能障下降 28
第五章 元件特性分析及討論 29
5-1 儀器分析之原理 29
5-1-1 HP4145 29
5-1-2 光譜效應(PhotoResponse) 30
5-1-3 響應速度(Response Speed) 30
5-2 電流電壓特性及光增益 31
5-2-1 非晶矽鍺能障型光電晶體之IV分析 31
5-2-2 d1為400Å 不同d2厚度之IV比較 31
5-2-3 d1為200Å 不同d2厚度之IV比較 32
5-2 PhotoResponse分析 33
5-3 響應速度分析 34
第六章 結論及未來展望 35
5-1 結論 35
5-2 未來展望 36
Reference 38
[1]C.Y. Chen, J.-J. Ho, Y.K. Fang and S.F. Chen, “Performance Analysis and Development of High-speed pin Infrared Sensors Prepared on Crystalline Silicon Substrates”, ICOSN 2001 (SPIE), pp305-310,June (2001).
[2]Jyh-Jier Ho, Y.K. Fang, K.H. Wu, and C.S. Tsai, “High-gain p-i-n infrared photosensors with Bragg reflectors on amorphous silicon alloy,” Appl. Phys. Lett.,.70 (7), pp.826-828, 17 Feb. (1997).
[3]Jyh-Jier Ho, Y.K. Fang, K.H. Wu and S.C. Huang, M.S. Ju and Jing-Jenn Lin, “High-speed Amorphous Silicon Germanium Infrared Sensors Prepared on Crystalline Silicon Substrates”, IEEE Trans. on Electron Devices, Vol.45, No.9, pp.2085-2088, Sept. (1998).
[4]Y. K. Fang, S. B. Hwang, K. H. Chen, C. R. Liu and L. C. Kuo, “A metal-amorphous silicon-germanium alloy schottky barrier for infrared optoelectronic IC on glass substrate application”, IEEE Trans on Electron Devices, Vol 39, No 6, pp.1350, (1992).
[5]T.Aoyama, G.Kawachi, N,Konishi, Y.Okajima and K.Miyata, “Crystallization of LPCVD Silicon Films by Low Temperature Annealing”, Journal of the Electrochemistry . Soc., vol136, no.4, pp.1169-1173, 1989.
[6]Seong-Min Choe, Jeong-Ah Ahn and Ohyum Kim, “Fabrication of Laser Annealed Poly-TFT by Foaming a SixGE1-x Thermal Barrier”, IEEE Electron Device Letters, Vol.22, No.3, March 2001.
[7]Seok-Woon Lee, Yoo-Chan Jeon and Seung-Ki Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett., 66(13), 27, pp1671-1673, March 1995.
[8]Jae Young, Ki Hyung Kim and Chae Ok Kim, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution”, Journal of Applied Physics, 82(11),pp.5865-5867, December 1997.
[9]Hiroshi Kanno, Isao Tsunoda, Atsushi Kenjo, Taizoh Sadoh, Shinya Tamaguchi, Masanobu Miyao, “Metal-induced solid-phase crystallization of amorphous SiGe film on insulator”, SSDM, 2002.
[10]P. Photopoulos, A.G. Nassiopoulou , D.N. Kouvatsos , A. Travlos,” Photo- and electroluminescence from nanocrystalline silicon single and multilayer structures”, Materials Science and Engineering B69–70 pp.345–349 (2000).
[11]T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura , S. Nitta, “Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids 266-269 pp.201-205 (2000).
[12]P. Roca i Cabarrocas, ”New approaches for the production of nano-, micro-,and polycrystalline silicon thin films”, phys. stat. sol. (c) 1, No. 5, 1115– 1130 (2004).
[13]Pere Roca i Cabarrocas, Anna Fontcuberta i Morral, Sarra Lebib,and Yves Poissant, “Plasma production of nanocrystalline siliconparticles and polymorphous silicon thin films for large-area electronic devices”, Pure Appl. Chem., Vol. 74, No. 3, pp. 359–367, (2002).
[14]P. J. Ventura, M. F Cerqueira, M. C. Carmo, J. A. Ferreira, “ Photoluminescence and structure properties from uc-Si:H and uc-Si:H-PS samples”, Thin Solid Films 296 pp.126–128 (1997).
[15]M. K. van Veen, C.H.M. van der Werf, J. K.Rath, R.E.I.Schropp, “Incoporation of amorphous and microystalline silicon in n-i-p solar cells”, Thin Solid Films 430 pp.216–219 (2003).
[16]Akihisa Matsuda, “Growth mechanism of microsytalline silicon obtained from reactive plasmas”, Thin Solid Films 337 pp.1–6 (1999).
[17]S. B. Hwang, Y. K. Fang, K. H. Chen, C. R. Liu, J. D. Hwang and M. H. Chou, “An a-Si:H/a-Si,Ge:H bulk barrier phototransistor with a-SiC:H barrier enhancement layer for high-gain IR optical detector”, IEEE Trans on Electron Devices, Vol 40, No 4, pp.721, (1993).
[18]T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, ”Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids 266-269 201-205. (2000).
[19]P. Roca i Cabarrocas, ”Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids 266-269 31-37 (2000).
[20]C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter 66 (23), 5 June (1995).
[21]Akihisa Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasma”. Thin Solid Films 337 1-6 (1999).
[22]O. Vetterl, P. Hapke, F. Finger, L. Houben, ”Growth of microcrystalline silicon using the layer-by-layer technique at various plasma excitation frequency”. Journal of Non-Crystalline Solids 227-230. 866-870 (1998).
[23]P. Roca i Cabarrocas, “Plasma enhanced chemical vapor deposition of silicon thin films for large area electronics”, Current Opinion in Solid State and Material Science 6 439-444 (2002).
[24]王文德,方炎坤, ”利用PECVD以改良式的複晶矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文,民國92年6月。
[25]M. Krause, H. Stiebig, R.Carius, U. Zastrow, H. Bay, H. Wagner, ”Structural and optoelectronic properties of microcrystalline silicon germanium”, Journal of Non-Crystalline Solids 299-302 (2002) 158-162.
[26]Xunming Deng, “High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells”, Annual Technical Progress Report (September 1, 2002 to August 31, 2003).
[27]C. Y. Chang, B. S. Wu, Y. K. Fang, and R. H. Lee, “Optical and electrical current gain in an amorphous silicon bulk barrier phototransistor”, IEEE Trans on Electron Devices, Vol. EDL-6, No 3, march pp.149 (1985).
[28]G. de. Cesare, G.. Masini, and F. Palma, Member, IEEE “Modeling and realization of a high-gain homojunction a-Si:H bulk barrier phototransistor”, IEEE Trans on Electron Devices, Vol 43, No 8, august pp.1077(1996).
[29]K. C. Chang, Chun-Yen Chang, Y. K. Fang, and S. C. Jwo, “The amorphous Si/SiC heterojunction color-sensitive phototransistor”, IEEE Trans on Electron Devices, Vol. EDL-8, NO 8, PP.64(1987).
[30]Zingway Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M.-J. Tsai, and C. W. Liu, Senior Member, IEEE, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor”, IEEE Trans on Electron Devices, Vol. 24, NO 10, PP.643(2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top