(3.238.186.43) 您好!臺灣時間:2021/02/28 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈子勛
研究生(外文):Tzu-Hsun Shen
論文名稱:比較探討垂直入射和邊射之(氮)砷化銦鎵/砷化鎵光檢測器
論文名稱(外文):Comparative Study of Vertically-Incident and Edge-Coupled InGaAs(N)/GaAs-based Photodetectors
指導教授:莊文魁莊文魁引用關係蘇炎坤蘇炎坤引用關係
指導教授(外文):Ricky Wenkuei ChuangYan-Kuin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:94
中文關鍵詞:光檢測器砷化鎵
外文關鍵詞:photodetectorGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,砷化銦鎵/砷化鎵光檢測器是由金屬有機化學氣相沉積法成長。首先,我們製做了垂直入射型的光檢測器,並且量測元件的光響應值跟量子效率,量測出來的結果,得到較低的光響應值跟量子效率,這表示在吸收效率上,並沒有很理想,為了改善這些缺點,我們製做邊射型的光檢測器,我們發現,邊射型的光檢測器可以在不改變磊晶結構的條件下,而可以在光響應值跟量子效率上,得到至少十倍的改善。
我們在砷化銦鎵中,掺入少量的氮,達到波長1.3微米。同樣地,在不改變磊晶結構的前提下,藉由製做邊射型光檢測器,可以得到較好的光響應值跟量子效率。最後,我們可以藉由掺入銻來改善我們的磊晶結構,降低光檢測器的暗電流。
In this thesis, InGaAs/GaAs-based photodetectors are grown by metal organic vapor phase epitaxy (MOVPE). First, vertically-incident photodetectors are formed, but with low responsivity and quantum efficiency. In order to improve their performances without changing the epitaxial structures, the edge-coupled photodetectors were fabricated for comparison. The responsivity of edge-coupled photodetectors was achieved with more than 10 times of improvement compared to conventional vertically-incident photodetectors.
To achieve 1.3um photodetection, nitrogen was incorporated into InGaAs to extend absorption wavelength to the desired target. Similarly, The responsivity and quantum efficiency of edge-coupled photodetectors were also improved without changing the epitaxial structures. Finally, an improvement in the quality of epitaxial photodetector structures could be realized through additional antimony incorporation, where a reduction in the dark current was noted.
Contents
Abstract (In Chinese) .................................................................................. I
Abstract (In English) .................................................................................. II
Acknowledgements .................................................................................... IV
Contents ....................................................................................................... V
Table Captions ........................................................................................ VIII
Figure Captions ......................................................................................... IX

Chapter 1 Introduction .................................................................... 1
1-1 Introduction ..................................................................... 2
1-2 Long Wavelength GaAs-based Photodetectors ............... 5
1-3 Organization of the Thesis .............................................. 8

Chapter 2 Background Theory ...................................................... 9
2-1 Theoretic Foundation of the Photodetectors .............. 10
2-1-1 Mechanism of the Current Transport for Junction Photodetectors................................................................ 10
2-1-2 Mechanisms of p-i-n Photodetectors ............................ 12
2-1-3 Theory of Edge-Coupled Photodetectors ...................... 14
2-2 Theoretical Analysis of p-i-n Photodetectors ............... 16
2-2-1 Dark Current ................................................................. 16
2-2-2 Responsivity and Quantum Efficiency ......................... 21
2-2-3 Junction Breakdown Voltage ........................................ 22
2-3 Metal Organic Vapor Phase Epitaxy Growth System ... 25
2-3-1 Kinetically Limited Region ........................................... 29
2-3-2 Thermodynamically Limited Region ............................ 30
2-3-3 Mass Transport Limited Region ................................... 30
2-4 Measurement System .................................................... 31
2-4-1 Current-Voltage Measurement System ......................... 31
2-4-2 Vertically-Incident Responsivity Measurement System ........................................................................... 32
2-4-3 Edge-Coupled Responsivity Measurement System ...... 33

Chapter 3 Vertically-Incident and Edge-Coupled InGaAs/GaAs MQW p-i-n Photodetectors ........................................ 34
3-1 InGaAs/GaAs MQW p-i-n Structures ........................... 35
3-2 Fabrication Process ....................................................... 36
3-2-1 Vertically-Incident Photodetectors ............................... 36
3-2-2 Edge-Coupled Photodetectors ....................................... 39
3-3 Comparison of Vertically-Incident and Edge-Coupled InGaAs/GaAs MQW p-i-n Photodetectors ................... 43
3-4 Comparison of Different Periods of InGaAs/GaAs MQW p-i-n Photodetectors ...................................................... 52
3-5 Summary ....................................................................... 64

Chapter 4 1.3�慆 InGaAsN/GaAs MQW p-i-n Photodetectors . 65
4-1 InGaAsN/GaAs MQW p-i-n Structures ........................ 66
4-2 Comparison of Vertically-Incident and Edge-Coupled InGaAsN/GaAs MQW p-i-n Photodetectors ................ 67
4-3 Improvement of Responsivity by Antimony Incorporation ................................................................. 75
4-4 Summary ....................................................................... 81
Chapter 5 Conclusions and Future Work ................................... 82
5-1 Conclusions ................................................................... 83
5-2 Future Work .................................................................. 85

References .................................................................................................. 87
References
Chapter 1
[1]C. R. Pollock, “Fundamentals of Optoelectronics”, Introduction and Overview, pp. 7, 1995.
[2]J. S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges”, Semiconductor Science and Technology, Vol. 17, No. 8, pp. 880-891, August 2002.
[3]J. Hecht, “Understanding Fiber Optics”, Upper Saddle River, NJ: Prentice Hall, 2002.
[4]S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs”, Applied Physics Letters, Vol. 74, No. 5, pp. 729-731, February 1999.
[5]J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah R. Kurtz, and B. M. Keyes, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs”, Journal of Crystal Growth, Vol. 195, No. 1-4, pp. 401-408, December 1998.
[6]D. J. Friedman, J. F. Geisz, Sarah R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer”, Journal of Crystal Growth, Vol. 195, No. 1-4, pp. 409-415, December 1998.
[7]M. Kondow, S. I. Nakatsuka, T. Kitacani, Y. Yazawa, and M. Okai, “Room-temperature pulsed operation of gainnas laser diodes with excellent high-temperature performance”, Japanese Journal of Applied Physics, Vol. 35, Part 1, No. 11, pp. 5711-5713, October 1996.
[8]W. G. Bi and C. W. Tu, “Bowing parameter of the band-gap energy of GaNxAs1 – x”, Applied Physics Letters, Vol. 70, No. 12, pp. 1608-1610, March 1997.
[9]K. Nakahara, M. Kondow, T. Kitacani, M. C. Larson, and K. Uomi, “1.3μm continuous-wave lasing operation in GaInNAs quantum-well lasers”, IEEE Photonics Technology Letters, Vol. 10, No. 4, pp. 487-488, April 1998.
[10]B. Sung, H. C. Chui, M. M. Fejer, and J. S. Harris, Jr., “Near-infrared wavelength intersubband transitions in high indium content InGaAs/AlAs quantum wells grown on GaAs”, Electronic Letters, Vol. 33, No. 9, pp. 818-820, April 1997.
[11]J. Y. Duboz, J. A.Gupta, M. Byloss, G. C. Aers, H. C. Liu, and Z. R. Wasilewski, “Intersubband transitions in InGaNAs/GaAs quantum wells”, Applied Physics Letters, Vo. 81, No. 10, pp. 1836-1838, September 2002.
[12]E. Luna, M. Hopkinson, J. M. Ulloa, A. Guzman, and E. Munoz, “Dilute nitride based double-barrier quantum-well infrared photodetector operating in the near infrared”, Applied Physics Letters, Vol. 83, No. 15, pp. 3111-3113, October 2003.
[13]S. M. Spaziani, K. Vaccaro and J. P. Lorenzo, “High performance substrate-removed InGaAs schottky photodetectors”, IEEE Photonics Technology Letters, Vol. 10, No. 8, pp. 1144-1146, August 1998.
[14]R. H. Yuang and J.-I. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors”, Electronic Letters, Vol. 32, No. 2, pp. 131-132, January 1996.
[15]M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance”, Japanese Journal of Applied Physics, Vol. 35, No. 2B, pp. 1273-1275, February 1996.
Chapter 2
[1]R. G. Hunsperger, “Integrated Optics Theory and Technology”, 5th Edition, Chapter 17 Integrated Optical Detectors, pp. 299-307, 2002.
[2]J. C. Campbell, AT&T Bell Lab. Technical Memorendum (unpublished).
[3]S. M. Sze, “Semiconductor Devices Physics and Technology”, Chapter 3.
[4]Jasprit Singh, “Semiconductor Optoelectronics Physics and Technology”, Chapter 6 Semiconductor junction theory, pp. 286, 1995.
[5]G. Dearnaley, J. H. Freeman, R. S. Nelson, Stephen, “Ion-Implantation”, Chapter 5 Applications to semiconductors, pp. 561, 1973.
[6]S. R. Forrest, M. Jr. Didomenico, R. G. Smith, H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes”, Applied Physics Letters, Vol. 36, No. 7, pp. 580-582, April 1980.
[7]S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, “In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling”, Applied Physics Letters, Vol. 37, No. 3, pp. 320-325, August 1980.
[8]H. M. Manasevit and W. I. Simpson, “The use of metal-organics in the preparation of semiconductor materials”, Journal of Electrochemical Society, Vol. 116, No. 12, pp. 1725-1732, December 1969.
[9]H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrates”, Applied Physics Letters, Vol. 12, No. 4, pp. 156-159, February 1968.
[10]H. M. Manasevit, “The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates”, Journal of Crystal Growth, Vol. 13-14, pp. 306-314, May 1972.
[11]J.-T. Zettler, K. Haberland, M. Zorn, M. Pristovsek, W. Richter, P. Kurpas and M. Weyers, “Real-time monitoring of MOVPE device growth by reflectance anisotropy spectroscopy and related optical techniques”, Journal of Crystal Growth, Vol. 195, No. 1-4, pp. 151-162, December 1998.
[12]Aixtron 200 User’s Manual, Aixtron AG.
[13]Carl Asplund’s thesis, KTH, 2003.
[14]G.B. “Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999.
[15]D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-μm highly strained GaInAs/GaAs quantum wells”, Journal of Crystal Growth, Vol. 221, No. 1-4, pp. 503-508, December 2000.
[16]F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, M. Hammar, “Low-threshold, high-temperature operation of 1.2μm InGaAs vertical cavity lasers”, Electronic Letters, Vol. 37, No. 15, pp. 957-958, July 2001.
[17]C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnstrom, E. Odling, J. Malmquist, “1260nm InGaAs vertical-cavity lasers”, Electronic Letters, Vol. 38, No. 13, pp. 635-636, June 2002.
[18] A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche , “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine”, Applied Physics Letters, Vol. 70, No. 21, pp. 2861- 2863, May 1997.
[19]G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3µm InGaAsN/GaAs Single Quantum Well Lasers”, Japanese Journal of Applied Physics, Vol. 41 Part 1, No. 2B, pp. 1040-1042, February 2002
[20]C. Asplund, P. Sundgren, M. Hammar, Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, pp. 619-621, May 12-16, 2002.
[21]T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemski, and J. Bradley, “Properties of high-purity AlxGa1−xAs grown by the metalorganic vapor-phase-epitaxy technique using methyl precursors”, Journal of Applied Physics, Vol. 62, No. 2, pp. 632-643, July 1987.
[22]A. C. Jones, “Metalorganic precursors for vapour phase epitaxy”, Journal of Crystal Growth, Vol. 129, No. 3-4, pp. 728-773, April 1993
[23]C. Asplund, A. Fujioka, M. Hammar, G. Landgren, “Annealing studies of metal-organic vapor phase epitaxy grown GaInNAs bulk and multiple quantum well structures”, EW-MOVPE VIII, Prague, June 8-11, pp. 437-440, 1999.

Chapter 3
[1]D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect”, Physical Review Letters, Vol. 53, No. 22, pp. 2173-2176, November 1984.
Chapter 4
[1]Q. Han, X. H. Yang, Z. C. Niu, H. Q. Ni, Y. Q. Xu, S. Y. Zhang, Y. Du, L. H. Peng, H. Zhao, C. Z. Tong, R. H. Wu, and Q. M. Wang, “1.55�慆 GaInNAs resonant-cavity-enhanced photodetector grown on GaAs”, Applied Physics Letters, Vol. 87, No. 11, Articles 111105, September 2005.
[2]S. R. Bank, H. B. Yuen, H. Bae, M. A. Wistey, A. Moto, and J. S. Harris, Jr., “Enhanced luminescence in GaInNAsSb quantum wells through variation of the arsenic and antimony fluxes”, Applied Physics Letters, Vol. 88, No. 2, Articles 241923, June 2006.
[3]S. R. Bank, H. P. Bae, H. B. Yuen, M. A. Wistey, L. L. Goddard, and J. S. Harris, Jr., “Room-temperature continuous-wave 1.55 /spl mu/m GaInNAsSb laser on GaAs”, Electronic Letters, Vol. 42, No. 3, pp. 156-157, February 2006.
[4]L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, and J. S. Harris Jr., “High-performance GaInNAsSb/GaAs lasers at 1.5�慆”, SPIE, Vol. 5738, pp. 180-191, April 2005.
[5]W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation”, Journal of Applied Physics, Vol. 101,No. 3, Articles 033122, February 2007.
[6]N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ = 1.19-1.31μm) quantum-well lasers”, IEEE Photonics Technology Letters, Vol. 14, No. 4, pp. 444-446, April 2002.

Chapetr 5
[1]W.K. Loke, S.F. Yoon, S. Wicaksono, B.K. Ng, “Characteristics of non-annealed lambda=1.35�慆 closely lattice-matched GaInNAs/GaAs p-i-n photodetector structures grown by solid-source molecular beam epitaxy”, Materials Science and Engineering B, Vol. 131, No. 1-3, pp. 40-44, July 2006.
[2]J. S. Ng, W. M. Soong, M. J. Steer, M. Hopkinson, J. P. R. David, J. Chamings, S. J. Sweeney, and A. R. Adams, “Long wavelength bulk GaInNAs pin photodiodes lattice matched to GaAs”, Journal of Applied Physics, Vol.101, No. 6, Articles 064506, March 2007.
[3]W. K. Cheah, W. J. Fan, S. F Yoon, D. H. Zhang, B. K. Ng, W. K. Loke, R. Liu, and A. T. S. Wee, “GaAs-Based Heterojunction p-i-n Photodetectors Using Pentanary InGaAsNSb as the Intrinsic Layer”, IEEE Photonics Technology Letters, Vol. 17, No. 9, pp. 1932-1934, September 2005.
[4]Wei Zhang, Zhong Pan, Lianhe Li, Ruikang Zhang, Yaowang Lin, and Ronghan Wu, “1.3μm GaInNAs/GaAs Multiple-Quantum-Wells Resonant-Cavity-Enhanced Photodetectors”, SPIE, Vol. 4580, pp. 225-231, APOC 2001, Beijing, China, 2001.
[5]J. B. He´ roux, X. Yang, and W. I. Wang, “GaInNAs resonant-cavity-enhanced photodetector operating at 1.3�慆”, Applied Physics Letters, Vol. 75, No. 18, pp. 2716-2718, November 1999.
[6]K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, “110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-�慆 wavelength,” IEEE Photonics Technology Letters, Vol. 6, No. 6, pp. 719-721, Jun 1994.
[7] G. Unterb¨orsch, D. Trommer, A. Umbach, R. Ludwig, and H.G. Bach, “High-power performance of a high-speed photodetector,” 24th Europe Conference Optical Communication, Vol. 1, pp. 67–68, September 1998.
[8]A. Beling, D. Schmidt, H.-G. Bach,G.G.Mekonnen, R. Ziegler,V. Eisner, M. Stollberg, G. Jacumeit, E. Gottwald, C.-J. Weiske, and A. Umbach, “High-power 1550nm twin-photodetector modules with 45 GHz bandwidth based on InP”, Optical Fiber Communication Conference and Exhibit, pp. 274-275, March 2002.
[9]A. Beling, H.-G. Bach, D. Schmidt, G. G. Mekonnen, R. Ludwig, S. Ferber, C. Schubert, C. Boerner, B. Schmauss, J. Berger, C. Schmidt, U. Troppenz, and H. G. Weber, “Monolithically integrated balanced photodetector and its application in OTDM 160 Gbit/s DPSK transmission”, Electronic Letters, Vol. 39, No. 16, pp. 1204-1205, August 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔