跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瑋鑫
研究生(外文):Wei-Hsin Chen
論文名稱:砷化銦鋁鎵/磷化銦異質接面雙極性電晶體之研製
論文名稱(外文):Fabrication of InAlGaAs/InP Heterojunction Bipolar Transistors (HBTs)
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chau Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:103
中文關鍵詞:異質接面雙極性電晶體磷化銦砷化銦鋁鎵步階式電流阻擋效應複合式集極
外文關鍵詞:current blocking effectcomposite collectorHBTInPInAlGaAsstep-graded
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,有鑒於較佳的高頻特性,以磷化銦材料為主之異質接面雙極性電晶體蓬勃發展。儘管擁有良好之高頻特性,單異質接面的雙極性電晶體卻受限於較差之直流表現,反觀雙異質接面雙極性電晶體提供較佳之輸出電導及崩潰特性,不過在基極與集極間仍需許多技術性的設計。
本論文中,主要重點在於傳統元件結構之改良設計,元件的特性量測與討論。我們設計出以磷化銦/砷化銦鎵為主之雙異質接面雙極性電晶體,配合使用步階式砷化銦鋁鎵結構,不僅使得元件之崩潰特性得以提升,元件之基-集極接面位障尖峰減緩並使元件之射極注入效率提高,還得到較低的輸出電導,以及使元件之補償電壓、導通電壓、膝形電壓降低。元件即使操作於非常小的集極電流(集極電流密度)仍具備電流放大之特性。另外,我們也證明了在不同溫度下單異質與雙異質接面的雙極性電晶體之特性,在溫度的變化下,由兩端及三端的量測,可知集極中的衝擊離子化效應主導了崩潰的機制。
Based on excellent high-speed and microwave performance, InP-based heterojunction bipolar transistor technology has been progressing rapidly over the past few years. The limitation of single heterojunction bipolar transistors comes from their dc characteristics. Double heterojunction bipolar transistors offer better output conductance and breakdown characteristics, but require more technical base-collector heterojunction design.
In this thesis, we focus on the improved design of conventional device structures, the measurement and discussion of the device characteristics. We describe InP/InGaAs double heterojunction bipolar transistor with the step-graded InAlGaAs collector structure. The designed structure in this work exhibits the advantages of no knee-shaped characteristics, low output conductance, better three-terminal breakdown voltages. Even the studied device was operated at an extremely low collector current region, it still consists the characteristics of an amplifier. On the other hand, we also investigated and demonstrated the temperature-dependence characteristics of the single and double heterojunction bipolar transistors. Temperature-dependent two- and three-terminal measurements suggest that avalanche impact ionization phenomenon is the dominant breakdown mechanism in the collector layer.
Abstract (Chinese)
Abstract (English)
Figure Captions
Chapter 1. Introduction...........................1
Chapter 2. A New InP/InGaAs Double Heterojunction Bipolar Transistor With a Step-Graded InAlGaAs Collector Structure
2-1. Introduction...........................7
2-2. Device structure and fabrication process...........................9
2-3. Experimental results and discussion...........................10
2-4. Summary...........................17
Chapter 3. Comparative Study on Temperature-Dependent Characteristics of InP/InGaAs Single- and Double-Heterojunction Bipolar Transistors
3-1. Introduction...........................19
3-2. Device structure and fabrication process...........................21
3-3. Experimental results and discussion...........................22
3-4. Summary...........................32
Chapter 4. Conclusion and Prospect
4-1. Conclusion...........................33
4-2. Prospect...........................34
References...........................37
Figures
Publication List
[1]C. R. Bolognesi, N. Matine, M. W. Dvorak, X.G. Xu, J. Hu, and S. P. Watkins, “Non-blocking collector InP/GaAs0.51Sb0.49/InP double heterojunction bipolar transistors with a staggered lineup base-collector junction,” IEEE Electron Device Lett., vol. 20, pp. 155-157, 1999.
[2]P. C. Chang, A. G. Baca, N. Y. Li, X. M. Xie, H. Q. Hou, and E. Armour, “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 76, pp. 2262-2264, 2000.
[3]Y. M. Kim, Z. Griffith, M. J. W. Rodwell, and A. C. Gossard, “High bandwidth and low-leakage Current InP-In0.53Ga0.47As-InP DBHTs on GaAs Substrates,” IEEE Electron Device Lett., vol. 25, pp. 170-172, 2004.
[4]S. H. Chen, S. Y. Wang, R. J. Hsieh, and J. I. Chyi, “InGaAsSb/InP double heterojunction bipolar transistors grown by solid-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 28, pp. 679-681, 2007.
[5]P. C. Chao, P. M. Smith, K. H. G. Duh, and J. C. M. Hwang, “60-GHz GaAs low-noise MESFET’s by molecular-beam epitaxy,” IEEE Trans. Electron Devices, vol. 33, pp. 1852-1857, 1986.
[6]Y. Hori, M. Kuzuhara, Y. Ando, and M. Mizuta, “Analysis of electric field distribution in GaAs metal-semiconductor field effect transistor with a field-modulating plate,” J. Appl. Phys., vol. 87, pp. 3483-3487, 2000.
[7]S. Nakajima, M. Yanagisawa, E. Tsumura, and T. Sakurada, “On the frequency dependent drain conductance of ion-implanted GaAs MESFETs,” IEEE Trans. Electron Devices, vol. 47, pp. 2255-2260, 2000.
[8]H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on DC characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals,” Semicond. Sci. Thechnol., vol. 18, pp. 319-324, 2003.
[9]P. Win, Y. Druelle, and A. Cappy, ”Metamorphic AlInAs/InGaAs layers on GaAs: A new structure for high-performance high electron mobility transistor realization,” Appl. Phys. Lett., vol. 61, pp. 922-924, 1992.
[10]J. C. Huang, G. S. Jackson, S. Shanfield, A. Platzker, P. K. Saledas, and C. Weichert, “An AlGaAs/InGaAs pseudomorphic high electron mobility transistor with improved breakdown voltage for X and Ku-Band power applications,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 752-759, 1993.
[11]K. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High-performance InP-based enhancement-mode HEMTs using nonalloyed Ohmic contacts and Pt-buried-gate technologies,” IEEE Trans. Electron Devices, vol. 43, pp. 252-257, 1996.
[12]A. Mahajan, M. Arafa, P. Fey, C. Caneau, and I. Adesida, “0.3 μm gate length enhancement-mode AlInAs/InGaAa/InP high-electron mobility transistor,” IEEE Electron Device Lett., vol. 18, pp. 284-286, 1997.
[13]Y. Cordier, S. Bollaert, J. Dipersio, D. Ferre, S. Trudel, Y. Druelle, and A. Cappy, “MBE grown InAlAs/InGaAs lattice mismatched layers for HEMT application on GaAs substrate,” Appl. Surf. Sci., vol. 123/124, pp. 734-737, 1998.
[14]M. Zaknoune, B. Bonte, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/GaInAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett., vol. 19, pp.345-347, 1998.
[15]K. Eisenbeiser, R. Droopad, and J.-H. Huang, “Metamorphic InAlAs/GaInAs enhancement mode HEMTs on GaAs substrate,” IEEE Electron Device Lett., vol. 20, pp. 507-509, 1999.
[16]Y. Luo, Y. Nakano, K. Tada, T. Inoue, H. Hosomatsu, and H. Iwaoka, “Purely gain-coupled distributed feedback semiconductor laser,” Appl. Phys. Lett., vol. 56, pp. 1620-1622, 1990.
[17]T. M. Cockerill, J. Honig, D. V. Forbes, and J. J. Coleman, “Distributed feedback strained layer quantum well heterostructure 980 nm laser fabricated by two-step metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 62, pp. 820-822, 1993.
[18]M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, ” Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/ALGaAs distributed feedback lasers,” Appl. Phys. Lett., vol. 74, pp. 483-485, 1999,
[19]F. M Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-reliable and high-speed 1.3 μm complex-coupled distributed feedback buried-heterostructure laser diodes with Fe-doped InGaAsP/InP hybrid grating layers grown by MOCVD,” IEEE Trans. Electron Devices, vol. 55, no. 2, pp. 540-546, 2008.
[20]I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 63, pp. 2174-2176, 1993.
[21]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
[22]M. R. Krames et al., “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365-2367, 1999.
[23]T. Nishida, N. Kobayashi, and T. Ban, “GaN-free transparent ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 82, pp. 1-3, 2003.
[24]D. F. Guo, W. C. Yeou, W. S. Lour, W. C. Hsu, and W. C. Liu, “Regenerative switching phenomenon of a GaAs metal-n-��(p+)-n-n+ structure,” Jpn. J. Appl. Phys., vol. 32, no. 7B, pp. L1011-L1013, 1993.
[25]D. F. Guo, S. R. Yih, J. T. Liang and W. C. Liu, “Characteristics of a GaAs Metal-n+-��-��(p+)-��-n+ Switch,” Solid-State Electron., vol. 37, no. 2, pp. 223-229, 1994.
[26]D. F. Guo, C. C. Chang, K. W. Lin, W. C. Liu, and W. Lin, “A multiple-negative-differential-resistance switch with double InGaP barriers,” Appl. Phys. Lett., vol. 69, no. 27, pp. 4185-4187, 1996.
[27]W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, K. B. Thei and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switching for multiple-valued logic application,” IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 520-525, 1997.
[28]C. C. Cheng, J. H. Tsai, and W. C. Liu, “Multiple switching phenomena of AlGaAs/InGaAs/GaAs heterostructure transistors,” Jpn. J. Appl. Phys., vol. 36, no. 3A, pp. 980-983, 1997.
[29]Q. Lee, B. Agarwal, D. Mensa, R. Pullela, J. Guthrie, L. Samoska, and M. J. W. Rodwell, “A > 400GHz fmax transferred-substrate heterojunction bipolar transistor IC technology,” IEEE Electron Device Lett., vol. 19, no. 3, pp. 77-79,1998.
[30]D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan, and M. J. W. Rodwell, ”Transffer-substrate HBTs with 254GHz fT,” IEE Electron Lett., vol. 35, pp. 605-606, 1999.
[31]Q. Lee, S. C. Martin, D. Mensa, R. P. Smith, J. Guthrie, and M. J. W. Rodwell, “Submicron transferred-substrate heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 20, pp. 396-398, 1999.
[32]T. Iwai, K. Kobayashi, Y. Nakasha, T. Miyashita, S. Ohara, and K. Joshin, “42% High-Efficiency Two-Stage HBT Power-Amplifier MMIC for W-CDMA Cellular Phone Systems”, IEEE Trans. Microwave Theory and Tech., vol. 48, pp. 2567-2572, 2000.
[33]J. H. Kim, Y. S. Noh, and C. S. Park, “ A Low Quiescent Current 3.3 V operation Linear MMIC Power Amplifier for 5 GHz WLNA Application”, IEEE Microwave Symp., pp. 867-870, 2003.
[34]S. Reed, Y. Wang, F. Huin, and S. Toutain, “HBT Power Amplifier With Dynamic Base Biasing for 3G Handset Applications,” IEEE Microw. Wireless Compon. Lett., vol. 14, pp. 380-382, 2004.
[35]Z. Griffith, E. Lind, M. J. W. Rodwell, X. M. Fangt, D. Loubychev, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Sub-300 nm InGaAs/InP Type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fmax and 416 GHz fT,” IEEE Indium Phosphide and Related Materials, pp. 403-406, 2007.
[36]W. Shockley, U.S. patent no. 2569347, and H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, vol. 45, pp. 1535-1536, 1957.
[37]S. Brodjo, T. J. Riley, and G. T. Wright, “The heterojunction transistor and the space charge limited triode.” B. J. Appl. Phys. 16, 133, 1965.
[38]W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation,” Solid-St. Electron., vol. 15, pp. 1339-1343, 1972.
[39]M. J. Mondry and H. Kroemer, “Heterostructure bipolar transistor using a (Ga,In)P emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985
[40]H. Kanbe, J. C. Vlcek, and C. G. Fonstad, “(In,Ga)As/InP n-p-n heterojunction bipolar transistors grown by liquid phase epitaxy with high dc current gain,” IEEE Electron Device Lett., vol. 5, pp. 172-175, 1984.
[41]H. R. Chen, C. Y. Chang, C. P. Lee, C. H. Huang, J. S. Tsang, and K. L. Tsai, “High current gain, low offset voltage heterostructure emitter bipolar transistors,” IEEE Electron Device Lett., vol. 15, pp. 336-338, 1994.
[42]S. Y. Cheng, H. J. Pan, Y. H. Shie, J. Y. Chen, W. L. Chang, W. C. Wang, P. H. Lin, and W. C. Liu, “Influence of ��-doping sheet and setback layer on the performance of InGaP/GaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 13, pp. 1187-1192, 1998.
[43]K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “High-speed InP/InGaAs double-heterostructure bipolar transistors with suppressed collector current blocking,” Appl. Phys. Lett., vol. 62, pp. 2372-2374, 1993.
[44]E. F. Chor and C. J. Peng, “Composite step-graded collector of InP/InGaAs DHBT for minimised carrier blocking,” IEE Electron. Lett., vol. 32, pp.1409-1410, 1996.
[45]J. C. Vlcek and C. G. Fonstad, “Multiply-graded InGaAlAs heterojunction bipolar transistors,” IEE Electron. Lett., vol. 27, pp.1213-1215, 1991.
[46]C. Nguyen, T. Liu, M. Chen, H. C. Sun, and D. Rensch, “AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications,” IEEE Electron Device Lett., vol. 17, pp. 133-135, 1996.
[47]H. F. Chau, W. Liu, and E. A. Beam, III, “InP based HBT’s and their perspective for microwave applications,” in Proc. 7th Int. Conf. Indium Phosphide and Related Materials, pp. 640-643, 1995.
[48]M. Hafizi, W. E. Stanchina, F. Williams Jr., and J. F. Jensen, “Reliability of InP-based HBT IC technology for high-speed, low-power applications,” IEEE Trans. Microwave Theory Techn., vol. 43, pp. 3048-3054, 1995.
[49]H. F. Chau, D. Pavlidis, J. Hu, and K. Tomizawa, “Breakdown-speed considerations in InP/InGaAs single- and double-heterostructure bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 2-8,1993.
[50]R. N. Nottenburg, Y. K. Chen, M. B. Panish, R. Hamm, and D. A. Humphrey, “High-current-gain submicrometer InGaAs/InP heterostructure bipolar transistors,” IEEE Electron Device Lett., vol. 9, pp.524-526, 1988.
[51]A. F. Levi, B. Jalali, and A. Y. Cho, “Vertical scaling in heterojunction bipolar transistors with nonequilibrium base transport,” Appl. Phys. Lett., vol. 60, pp. 460-462, 1992.
[52]M. W. Dvorak, N. Matine, and C. R. Bolognesia, “Design and performance of InP/GaAsSb/InP double heterojunction bipolar transistors,” J. Vac. Sci. Technol. A, vol. 18, pp. 761-764, 2000.
[53]S. C. Chen, Y. K. Su, and C. Z. Lee, “Collector-emitter offset voltage in single- and double-base InGaAs(P)/InP heterojunction bipolar transistors,” Solid-St. Electron., vol. 35, pp. 553-560, 1992.
[54]A. Dodabalapur, and T. Y. Chang, “High-gain InGaAlAs/InGaAs heterojunction bipolar transistors and phototransistors,” IEEE Electron Device Lett., vol. 12, pp. 693-695, 1991.
[55]J. Y. Chen, D. F. Guo, S. Y. Cheng, K. M. Lee, C. Y. Chen, H. M. Chuang, S. Y. Fu, and W. C. Liu, “A new InP-InGaAs HBT with a superlattice-collector structure,” IEEE Electron Device Lett., vol. 25, pp. 244-246, 2004.
[56]W. K. Huang, S. C. Huang, H. W. Chung, Y. M. Hsin, J. W. Shi, Y. C. Kao, and J. M. Kuo, “37-GHz bandwidth monolithically integrated InP HBT/evanescently coupled photodiode”, IEEE Photon. Technol. Lett., vol. 18, pp. 1323-1325, 2006.
[57]J. H. Tsai and Y. C. Kang, “Dc performance of InP/InGaAs pnp heterostructure-emitter bipolar transistor,” IEEE Trans. Electron Devices, vol. 53, pp. 1265-1268, 2006.
[58]N. Parthasarathy, Z. Griffith, C. Kadow, U. Singisetti, M. J. W. Rodwell, X. M. Fang, D. Loubychev, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Collector-pedestal InGaAs/InP DHBTs fabricated in a single-growth, tripe-implant process,” IEEE Electron Device Lett., vol. 27, pp. 313-316, 2006.
[59]A. Feygenson, D. Ritter, R. A. Hamm, P. R. Smith, P. K. Montgomery, R. D. Yadvish, H. Temkin, and M. B. Panish, “InGaAs/InP composite collector heterojunction bipolar transistors,” Electron. Lett., vol. 28, pp. 607-609, 1992.
[60]Y. H. Wu, J. S. Su, W. C. Hsu, W. C. Liu, and W. Lin, “Characteristics of In0.53Ga0.47As/InP double and single heterostructure-emitter bipolar transistors grown by LP-MOCVD” Solid State Electron., vol. 38, pp. 767-769, 1995.
[61]W. C. Liu, S. Y. Cheng, W. L. Chang, H. J. Pan, and Y. H. Shie, “Application of ��-doped wide-gap collector structure for high-breakdown and low-offset voltage transistors,” Appl. Phys. Lett., vol. 73, pp. 1397-1399, 1998.
[62]D. Caffin, A. M. Duchenois, F. Heliot, C. Besombes, J. L. Benchimol, and P Launay, “Base-collector leakage currents in InP/InGaAs double heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 930-936, 1997.
[63]M. Kahn, S. Blayac, M. Riet, Ph. Berdaguer, V. Dhalluin, F. Alexandre, and J. Godin, “Measurement of base and collector transit times in thin-base InGaAs/InP HBT,” IEEE Electron Device Lett., vol. 24, pp. 430-432, 2003.
[64]M. Dahlstrom, X. M. Fang, D. Lubyshev, M. Urteaga, S. Krishnan, N. Parthasarathy, Y M. Kim, Y. Wu, J. M. Fastenau, W. K. Liu, and M. J. W. Rodwell, “Wideband DHBTs using a graded carbon-doped InGaAs base,” IEEE Electron Device Lett., vol. 24, pp. 433-435, 2003.
[65]S. Krishnan, M. Dahlstrom, T. Mathew, Y. Wei, D. Scott, M. Urteaga, M. J. W. Rodwell, W. K. Liu, D. Lubyshev, X. M. Fang, and Y. Wu, “InP/InGaAs double heterojunctio bipolar transistors with 300 GHz Fmax,” in Proc. 13th Int. Conf. on InP and Related Materials, Nara, pp. 31-34, 2001.
[66]M. Ida, K. Kurishima, and N. Watanabe, “Over 300 GHz fT and fmax InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base,” IEEE Electron Device Lett., vol. 23, pp. 694-696, 2002.
[67]W. C. Liu, W. C. Wang, J. Y. Chen, H. J. Pan, S. Y. Cheng, K. B. Thei, and W. L. Chang, “A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics,” IEEE Electron Device Lett., vol. 20, pp. 510-513, 1999.
[68]T. C. Peng, Y. H. Huang, C. C. Yang, K. F. Huang, F. M. Lee, M. C. Wu, and C. L. Ho, “Low cost and high performance of 1.3 �慆 AlGaInAs/InP uncooled laser diodes,” IEEE Photon. Technol. Lett., vol. 18, pp. 1380-1382, 2006.
[69]S. Y. Cheng, “Comprehensive study of an InGaP/AlGaAs/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure,” Semicond. Sci. Technol., vol. 17, pp.701-707, 2002.
[70]J. Y. Chen, C. Y. Chen, K. M. Lee, C. H. Yen, S. F. Tsai, S. Y. Cheng, and W. C. Liu, “Temperature-dependent dc characteristics of an InGaAs/InGaAsP heterojunction bipolar transistor with an InGaAsP spacer and a composite-collector structure,” J. Vac. Sci. Technol. B, vol. 22, pp. 2727-2733, 2004.
[71]C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chung, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “Dc characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
[72]W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. Hui. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
[73]M. L. Parrilla, D. J. Newson, J. A. Quayle, M. D. A. Macbean, and D. J. Skellern, “InP/InGaAs double-heterojunction bipolar transistors with high speed, gain and current-driving capability,” Electron. Lett., vol. 28, pp. 85-86, 1992.
[74]Y. Matsuoka, K. Kurishima, and T. Makimoto, “High-frequency InP/InGaAs double heterojunction bipolar transistors on a si substrate,” IEEE Electron Device Lett., vol. 14, pp. 357-359, 1993.
[75]W. Liu, “Handbook of III-V Heterojunction Bipolar Transistors,” John Wiley & Sons, New York, 1998.
[76]S. Y. Cheng, K. Y. Chu, and L. Y. Chen, “A novel InGaP/AlxGa1-xAs/GaAs CEHBT,” IEEE Electron Device Lett., vol. 27, pp .532-534, 2006.
[77]S. I. Fu, R. C. Liu, S. Y. Cheng, P. H. Lai, Y. Y. Tsai, C. W. Hung, T. P. Chen, and W. C. Liu, “Comprehensive investigation on emitter ledge length of InGaP/GaAs heterojunction bipolar transistors,” J. Vac. Sci. Technol. B, vol. 25, pp. 691-696, 2007.
[78]Y. Z. Xiong, G. I. Ng, H. Wang, and J. S. Fu, “DC and microwave noise transient behavior of InP/InGaAs double heterojunction bipolar transistor (DHBT) with polyimide passivation,” IEEE Trans. Electron Devices, vol.48, pp. 2192-2197, 2001.
[79]Y. S. Lin, ”Breakdown characteristics of InP/InGaAs composite-collector double heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 83, pp. 5545-5547, 2003.
[80]Y. S. Lin., D. H. Huang, W. C. Hsu, K. H. Su, and T. B. Wang, “Enhancing the current gain in InP/InGaAs double heterojunction bipolar transistors using emitter edge thinning,” Semicond. Sci. Technol., vol. 21, pp. 303-305, 2006.
[81]S. P. McAlister, W. R. Mckinnon, R. Driad, and A. P. Renaud, “Use of dipole doping to suppress switching in indium phosphide double heterojunction bipolar transistors,” J. Appl. Phys., vol. 82, pp. 5231-5234, 1997.
[82]K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 1319-1326, 1994.
[83]H. Wang, H. Yang, K. Radhakrishnan, T. K. Ng, and W. C. Cheong, “The influence of emitter material on silicon nitride passivation-induced degradation in InP-based HBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 8-13, 2004.
[84]Z. Griffith, M. J. W. Rodwell, X. M. Fang, D. Loubychev, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “InGaAs/InP DHBTs with 120-nm collector having simultaneously high fT, fmax ≥ 450 GHz,” IEEE Electron Device Lett., vol. 26, pp. 530-532, 2005.
[85]B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector Heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995.
[86]D. Ritter, R. A. Hamm, A. Feygenson, and M. B. Panish, “Anomalous electric field and temperature dependence of collector multiplication in InP/Ga0.47In0.53As heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 60, pp. 3150-3152, 1992.
[87]J. Y. Chen, S. Y. Cheng, C. Y. Chen, K. M. Lee, C. H. Yen, S. Y. Fu, S. F. Tsai, and W. C. Liu, “Characteristics of an InP-InGaAs-InGaAsP HBT,” IEEE Trans. Electron Devices, vol. 51, pp. 1935-1938, 2004.
[88]W. C. Liu, H. J. Pan, S. Y. Cheng, W. C. Wang, J. Y. Chen, S. C. Feng, and K. H. Yu, “Applications of an In0.53Ga0.25Al0.22As/InP continuous-conduction-band structure for ultralow current operation transistors,” Appl. Phys. Lett., vol. 75, pp. 572-574, 1999.
[89]D. Ritter, R. A. Hamm, A. Feygenson, H. Temkin, M. B. Panish, and S. Chandrasekhar, “Bistable hot electron transport in InP/GaInAs composite collector heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 61, pp. 70-72, 1992.
[90]Z. Abid, S. P. McAlister, W. R. McKinnon, and E. E. Guzzo, “Temperature dependent DC characteristics of an InP/InGaAs/InGaAsP HBT,” IEEE Electron Device Lett., vol. 15, pp. 178-180, 1994.
[91]H. J. Pan, W. C. Wang, K. B. Thei, C. C. Cheng, K. H. Yu, K. W. Lin, C. Z. Wu, and W. C. Liu, “Investigation of temperature-dependent performances of InP/In0.53Ga0.34Al0.13As heterojunction bipolar transistors,” Semicond. Sci. Technol, vol. 15, pp. 1101-1106, 2000.
[92]H. Wang and G. I. Ng, “Avalanche multiplication in InP/InGaAs double heterojunction bipolar transistors with composite collectors,” IEEE Trans. Electron Devices, vol. 47, pp. 1125-1133, 2000.
[93]N. Shamir, and D. Ritter, “Lower limit of method for the extraction of ionization coefficients from the electrical characteristics of heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 47, pp. 488-490, 2000.
[94]C. Canali, C. Forzan, A. Neviani, L. Vendrame, E. Zanoni, R. A. Hamm, R. Malik, F. Capasso, and S. Chandrasekhar, “Measurement of the electron ionization coefficient at low electric fields in InGaAs-based heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 66, pp. 1095-1097, 1995.
[95]H. Wang, H. Yang, W. P. Neo, K. Radhakrishnan, and C. L. Tan, ” Temperature dependence of avalanche multiplication in InP-based HBTs with InGaAs/InP composite collector: Device characterization and physics model,” IEEE Trans. Electron Devices, vol. 50, pp. 2335-2343, 2003.
[96]W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett., vol. 83, pp. 2820-2822.
[97]I. H. Lee, S. D. Lee, J. K. Rhee, and H. S. Park, “Studies on air-bridge processes for mm-wave MMIC's applications,” J. Korean Phys. Soc., vol. 35, pp. S1043-S1046, 1999.
[98]C. M. Wang, S. C. Huang, W. K. Huang and Y. M. Hsin, “An InP/InGaAs/InP DHBT with High Power Density at Ka-band,“ Solid-St. Electron., vol. 52, pp. 49-52, 2008.
[99]B. G. Min, J. M. Lee, S.I. Kim, C. W. Ju, and K. H. Lee, “Fabrication of reliable self-aligned lnP/lnGaAs/lnP double heterojunction bipolar transistor with hexagonal emitter mesa structure,” J. Korean Phys. Soc., vol. 49, pp. S780-S783, 2006.
[100]D. Sawdai, K. Yang, S. S. –H. Hsu, D. Pavlidis, and G. I. Haddad, “Power performance of InP-Based Single and Double Heterojunction Bipolar Transistors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1449-1456, 1999.
[101]K. W. Kobayashi, J. C. Cowles, L. T. Tran, A. G. Aitken, M. Nishimoto, J. H. Elliott, T. R. Block, A. K. Oki, and D. C. Streit, “A 44-GHz-high IP3 InP HBT MMIC amplifier for low DC power millimeter-wave receiver applications,” IEEE J. Solid-St. Circ., vol. 34, pp. 1188–1195, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊