跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/21 05:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂典陽
研究生(外文):Dian-Yang Lu
論文名稱:氣橋式與平台式結構變晶性高電子移動率電晶體之研製
論文名稱(外文):Fabrication of Metamorphic High Electron Mobility Transistors (MHEMTs) with Air-Bridge and Mesa Type Structures
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chau Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:97
中文關鍵詞:平台式氣橋式高電子移動率電晶體
外文關鍵詞:mesa typeair-bridgeMHEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用分子束磊晶法研製砷化銦鋁/砷化銦鎵/砷化鎵變晶性高電子移動率電晶體。由於傳統的平台製程造成元件大閘極漏電流、低崩潰電壓和低截止頻率,此被稱為平台障壁效應。
為了改善平台障壁效應的影響,我們於本論文中使用氣橋式結構來克服,利用濕式蝕刻製程在閘極金屬與元件通道層間提供良好的隔絕,避免閘極漏電流路徑。
此外,我們比較氣橋式與傳統平台式結構之元件特性,包含直流、微波和線性度的表現。在室溫下,氣橋式結構元件展現良好的直流特性,隨著溫度從90K升到420K時,氣橋式結構元件的直流與微波特性依然優於平台式結構。因此,氣橋式結構元件有效地改善了平台障壁效應對元件特性的影響和呈現出良好的微波特性。
In this thesis, InAlAs/InGaAs/GaAs metamorphic high electron mobility transistors (MHEMTs) grown by molecular beam epitaxy (MBE) have been fabricated and investigated. The conventional mesa isolation process in metamorphic HEMTs results in the gate contacting the exposed highly doped channel layer at the mesa sidewalls, forming a parasitic gate leakage path. This was called mesa-sidewall effect.
Mesa-sidewall effect causes an excessive gate leakage current, low breakdown voltage, and inadequate microwave response. Therefore, this work presents a single pier air-bridge type structure, capable of eliminating the gate leakage current and parasitic capacitance.
Furthermore, the characteristics of the devices with air-bridge and mesa type structures, including DC properties, microwave performance, and linearity are systematical compared. At room temperature, the air-bridge type device shows better DC features. With increasing temperature from 90K to 420K, the characteristics of air-bridge type device are still better than mesa-type device. The device with air-bridge structure resolves effectively mesa-sidewall effect and exhibits good microwave performance.
Abstract…………………………………………………………………. i
Figure Captions
Chapter 1 Introduction........................................1
1-1 Thesis Organizations .....................................3
Chapter 2 The InAlAs/InGaAs/GaAs Metamorphic High Electron
Mobility Transistor (MHEMT) with Air-Bridge Type Gate
..............................................................5
2-1 Introduction..............................................5
2-2 Device Fabrication .......................................6
2-3 Experimental Results and Discussion ......................7
2-3-1 DC Performances ........................................7
2-3-2 Microwave Characteristics...............................12
2-3-3 Noise Characteristics ..................................13
2-3-4 Power Characteristics ..................................14
2-3-5 Distortion and Linearity................................14
2-4 Summary...................................................16
Chapter 3 Comparative Studies of the Device properties of
InAlAs/InGaAs/GaAs Metamorphic High Electron
Mobility Transistors (MHEMTs) with Air-Bridge and
Mesa Type Gates...............................................18
3-1 Introduction..............................................18
3-2 Device Fabrication .......................................19
3-3 Experimental Results and Discussion ......................20
3-3-1 DC Performances ........................................20
3-3-2 Microwave Characteristic ...............................24
3-3-3 Noise Characteristic....................................25
3-3-4 Power Characteristic and Linearity .....................25
3-4 Summary ..................................................26
Chapter 4 Conclusion and Prospest ............................28
4-1 Conclusion ...............................................28
4-2 Prospect..................................................29
Reference……………………………………………………………….31
Figures
[1]S. Brodjo, T. J. Riley, and G. T. Wright, “The heterojunction transistor and the space charge limited triode,” B.J. Appl. Phys. vol. 16, p.133, 1965.
[2]W. V. McLevige, H. T. Yuan, W. M. Duncan, W. R. Frensley, F. H. Doerbeck, H. Morkoc and, T. J. Drummond, “GaAs/AlGaAs heterojunction bipolar transistors for integrated circuit applications,” IEEE Electron Device Lett., vol. 3, pp. 43-45, 1982.
[3]P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. A. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Electron Devices, vol. 34, pp. 2571 -2579, 1987.
[4]N. Pan, J. Elliott, M. Knowles, D. P. Vu, K. Kishimoto, J. K. Twynam, H. Sato, M. T. Fresina and G. E. Stillman, “High reliability InGaP/GaAs HBT,” IEEE Electron Device Lett., vol. 19, pp. 115-117, 1998.
[5]P. M. Asbeck, D. L. Miller, W. C. Petersen and C. G. Kirkpatrick, “GaAs/GaAlAs heterojunction bipolar transistors with cutoff frequencies above 10 GHz,” IEEE Electron Device Lett., vol. 3, pp. 366-368, 1982.
[6]M. Inada, Y. Ota, A. Nakagawa, M. Yanagihara, T. Hirose and K. Eda, “AlGaAs/GaAs heterojunction bipolar transistors with small size fabricated by a multiple self-alignment process using one mask,” IEEE Trans. Electron Devices, vol. 34, pp. 2405-2411, 1987.
[7]M. Kurata and J. Yoshida, “Modeling and characterization for high-speed GaAlAs-GaAs n-p-n heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 31, pp. 467-473, 1984.
[8]McCarthy LS, Kozodoy P, Rodwell MJW, DenBaars SP and Mishra UK, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, pp. 277-279, 1999.
[9]W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 14, pp. 176-178, 1993.
[10]H. J. Pan, S. C. Feng, W. C. Wang, K. W. Lin, K. H. Yu, C. Z. Wu, L. W. Laih and W. C. Liu, “Investigation of an InGaP/GaAs resonant-tunneling heterojunction bipolar transistor,” Solid-State Electron., vol. 45, pp. 489-494, 2001.
[11]W. C. Liu, W. C. Wang, J. Y. Chen, H. J. Pan, S. Y. Cheng, K. B. Thei and W. L. Chang, “A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics,” IEEE Electron Device Lett., vol. 20, pp. 510-513, 1999.
[12]S. Y. Cheng, W. C. Wang, W. L. Chang, J. Y. Chen, H. J. Pan and W. C. Liu, “A new InGaP GaAs double delta-doped heterojunction bipolar transistor ((DHBT)-H-3),” Thin Solid Films, vol. 345, pp. 270-272, 1999.
[13]M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a GaInP emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985.
[14]W. Schockley , "Circuit elements utilizing semiconductive material," U. S. Patent, N. 2569, p. 347, 1951.
[15]H. Kroemer, "Heterostructure bipolar transistors and integrated circuits," IEEE Proc. vol. 70, p.13, 1982.
[16]W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-AlGaAs heterojunction transistor for high frequency operation,” Solid-State Electron. vol. 15, p.12, 1972.
[17]R. E. Thoren, S. L. Su, R. J. Fischer, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkos, “Analysis of camel gate FET’s,” IEEE Trans. Electron Devices, vol. 30, pp. 212-216, 1983.
[18]F. Ren, C. R. Abernathy, S. J. Pearton, J. R. Lothian, P. W. Wisk, T. R. Fullowan, Y. K. Chen, L. W. Yang, S. T. Fu, R. S. Brozovich, and H. H. Lin, “Self-aligned InGaP/GaAs heterojunction bipolar transistors for microwave power application,” IEEE Electron Device Lett. vol. 14, pp. 332 –334, 1993.
[19]W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 14, pp. 176-178, 1993.
[20]H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, P. H. Lai, C. I. Kao and W. C. Liu, “Study of InGaP/InGaAs Double Delta-Doped Channel Heterostructure Field-Effect Transistors (DDDCHFETs),” J. Vac. Sci. & Technol. B, vol. 22, pp. 832-837, 2004.
[21]K. Eisenbeiser, R. Droopad and J. H. Huang, “Metamorphic InAlAs/InGaAs enhancement mode HEMTs on GaAs substrates,” IEEE Electron Device Lett., vol. 20, pp. 507-509, 1999.
[22]H. C. Chiu, Y. C. Chiang and C. S. Wu, “High breakdown voltage (Al0.3Ga0.7)0.5In0.5/P/InGaAs quasi-enhancement-mode pHEMT with field-plate technology,” IEEE Electron Device Lett., vol. 26, pp. 701-703, 2005.
[23]K. B. Chough, B. W. P. Hong, C. Caneau, J. I. Song, K. I. Jeon, S. C. Hong and K. Lee, “Graded pseudomorphic channel AlInP/AlInAs/GaInAs HEMTs with high channel breakdown voltage,” Electron. Lett., vol. 30, pp. 453-454, 1994.
[24]D. W. Tu, J. S. M. Liu, K. C. Hwang, W. Kong, and P. C. Chao, “High-Performance Double-Recessed InAlAs/InGaAs Power Metamorphic HEMT on GaAs Substrate” IEEE Microwave and Guided Wave Letters, vol. 9, pp. 458-460, 1999.
[25]I. Adesida, A. Mahajan, G. Cueva, and P. Fay, “Novel HEMT processing technologies and their circuit applications,” Solid-State Electron., vol. 43, pp. 1333-1338, 2001.
[26]K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng and W. C. Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 40, pp. 24-27, 2001.
[27]H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
[28]W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour and W. C. Liu, “On the n+-GaAs/(p+)-InGaP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
[29]K. H. Yu, H. Mi. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
[30]H. C. Chiu, Y. C. Chiang and C. S. Wu, “High breakdown voltage (Al0.3Ga0.7)0.5In0.5/P/InGaAs quasi-enhancement-mode pHEMT with field-plate technology,” IEEE Electron Device Lett., vol. 26, pp. 701-703, 2005.
[31]F. T. Chien, S. C. Chiol, and Y. J. Chan, “Microwave Power Performance Comparison Between Single and Dual Doped-Channel Design in AlGaAs/InGaAs HFET’s,” IEEE Electron Device Letters, vol. 21, pp. 60-62, 2000.
[32]K. Shinohara, Y. Yamashita, A. Endoh, K. Hikosaka, T. Matsui, T. Mimura, and S. Hiyamizu, “Ultrahigh-Speed Pseudomorphic InGaAs/InAlAs HEMTS with 400GHz Cutoff Frequency,” IEEE Electron Device Letters, vol. 22, pp. 507-509, 2001.
[33]D. H. Kim, J. A. del Alamo, J. H. Lee, and K. S. Seo, “Logic Suitability of 50-nm In0.7Ga0.3As HEMTs for Beyond-CMOS Applications,” IEEE Transaction on Electron Devices, vol. 52, pp. 2606-2613, 2007.
[34]Ozgur Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, and H. Morkoc, “High temperature characteristic of AlGaN/GaN modulation doped field-effect transistors,” Appl. Phys. Lett., vol. 69, pp. 3872-3874, 1996.
[35]M. Zaknoune, Y. Cordier, S. Bollaert, Y. Druelle, D. Theron and Y. Crosnier, “High performance metamorphic In0.32Al0.68As/In0.33Ga0.67As HEMTs on GaAs substrate with an inverse step InAlAs metamorphic buffer,” Device Research Conference Digest, 56th Annual, pp. 34–35, 1998.
[36]K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng and W. C. Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 40, pp. 24-27, 2001.
[37]S. Loualiche, A. Ginudi, A. L. Corre, D. Lecrosnier, C. Vaudry, L. Henry, and C. Guillemot, “Low-temperature DC characteristics of pseudomorphic Ga0.18In0.82P/InP/Ga0.47In0.53As HEMT.” IEEE Electron Device Lett., vol. 11, pp. 153-155, 1990.
[38]K. Eisenbeiser, R. Droopad and J. H. Huang, “Metamorphic InAlAs/InGaAs enhancement mode HEMTs on GaAs substrates,” IEEE Electron Device Lett., vol. 20, pp. 507-509, 1999.
[39]S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet and A. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMTs on GaAs substrate,” IEEE Electron Device Lett., vol. 20, pp. 123-125, 1999.
[40]M. Boudrissa, E. Delos, Y. Cordier, D. Theron and J. C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE Electron Device Lett., vol. 21, pp.512-514, 2000.
[41]K. Yuan , K. Radhakrishnan , H. Q. Zheng and G. I. Ng, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As high electron mobility transistors on GaAs with InxGa1-xP graded buffer,” J. Vac. Sci. & Technol. B, vol. 19, pp. 2119-2122, 2001.
[42]M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte and D. Theron, “60-GHz high power performance In0.35Al0.65As-In0.35Ga0.65As metamorphic HEMTs on GaAs,” IEEE Electron Device Lett., vol. 24, pp. 724–726, 2003.
[43]H. C. Duran, L. Ren, M. Beck, M.A. Py, M. Begems and W. Bachtold, “Low-frequency noise properties of selectively dry etched InP HEMT's,” IEEE Trans. Electron Devices, vol. 45, pp. 1219-1225, 1998
[44]R. Grundbacher, R. Lai, M. Nishimoto, T.P. Chin, Y.C. Chen, M. Barsky, T. Block and D. Streit, “Pseudomorphic InP HEMTs with dry-etched source vias having 190 mW output power and 40% PAE at V-band,” IEEE Electron Device Lett., vol. 20, pp. 517-519, 1999.
[45]C. Meliani, G. Post, G. Rondeau, J. Decobert, W. Mouzannar, E. Dutisseuil and R. Lefevre, “DC-92 GHz ultra-broadband high gain InP HEMT amplifier with 410 GHz gain-bandwidth product,” Electron. Lett., vol. 38, pp. 1175-1177, 2002.
[46]P. M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry and A.W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials, pp. 9-14, 2001.
[47]H. M. Chuang, S. Y. Cheng, X. D. Liao, C. Y. Chen and W. C. Liu, “InGaP/InGaAs double delta-doped channel transistor,” Electron. Lett., vol. 39, pp. 1016-1018, 2003.
[48]B. O. Lim, M. K. Lee, T. J. Baek, M. Han, S. C. Kim, J. K. Rhee, ”50-nm T-Gate InAlAs/InGaAs Metamorphic HEMTs With Low Noise and High fT Characteristics.” IEEE Electron Device Letters, vol. 28, pp.546-548, 2007
[49]P.M. Smith, K. Nichols,W. Kong, L. MtPleasant, D. Pritchard, R. Lender,
J. Fisher, R. Actis, D. Dugas, D.Meharry, and A.W. Swanson, “Advances
in InP HEMT technology for high frequency applications,” in Proc. Gallium
Arsenide Integr. Circuit Symp., pp. 7–10, 2001.
[50]Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, “Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs with an ultrahigh fT of 562 GHz,” IEEE Electron Device Lett., vol. 23, pp. 573–575, 2002.
[51]M. Borg, J. Grahn, S. Wang, A. Mellberg, and H. Zirath, “Vertical scaling of gate-to-channel distance for a 70 nm InP pseudomorphic HEMT technology,” in Proc. Int. Conf. Indium Phosphide and Related Mater., pp. 204–207, 2005.
[52]M. Y. Kao, K. H. G. Duh, P. Ho, and P. C. Chao, “An extremely low-noise InP-based HEMT with silicon nitride passivation,” in IEDMT ech. Dig., pp. 907–910, 1994
[53]K. S. Lee, Y. S. Kim, Y. K. Hong, Y. H. Jeong, “35-nm Zigzag T-Gate In0.52Al0.48As/In0.53Ga0.47As Metamorphic GaAs HEMTs With an Ultrahigh fmax of 520 GHz,” IEEE Electron Device Letters, vol. 28, pp. 672-675, 2007.
[54]C. S. Lee, C. H. Liao, “Relieved Kink effects in symmetrically graded In0.45Al0.55As/InxGa1-xAs metamorphic high-electron-mobility transistors,” J. Appl. Phys., vol. 102, pp.114502, 2007.
[55]Y. Cordier, S. Bollaert, M. Zaknoune, J. diPersio, D. Ferre, “AlInAs/GaInAs metamorphic HEMT’s on GaAs substrate: from material to device,” Indium Phosphide and Related Materials, 1998 International Conference on 11-15 May, pp.211-214, 1998.
[56]Y. J. Chan, and G. I. Ng, “The Influence of Gate-Feeder/Mesa-Edge Contacting on Sidegating Effects in In0.52Al0.48As/In0.53Ga0.47As Heterostructure FET’s”, IEEE Electron Device Lett., vol. 12, pp. 360-362, 1991
[57]Y. S. Lin, S. S. Lu, and Y. J. Wang, “High-Performance Ga0.51In0.49P/GaAs Airbridge Gate MISFET’s Grown by Gas-Source MBE”, IEEE Transactions on Electron Devices, vol. 44, pp. 921-929, 1997
[58]S. R. Bahl, Jesús A. del Alamo, “Elimination of Mesa-Sidewall Gate Leakage in InAlAs/InGaAs Heterostructures by Selective sidewall Recessing”, IEEE Electron Device Lett., vol. 12, pp. 195-197, 1992
[59]K. W. Lee, K. L. Lee, X. Z. Lin, C. H. Tu, and Y. H. Wang, "Improvement of Impact Ionization Effect and Subthreshold Current in InAlAs/InGaAs Metal–Oxide–Semiconductor Metamorphic HEMT With a Liquid-Phase Oxidized InAlAs as Gate Insulator.” IEEE Electron Device Letters, vol. 54, pp. 418-424, 2007.
[60]D. C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate with fT over 200 GHz,” Electronics Letters, vol. 35, pp. 1854 – 1856, 1999.
[61]C. S. Whelan, W.F. Hoke, R.A. McTaggart, M. Lardizabal, P.S. Lyman, P.F. Marsh, T.E. Kazior, “Low noise In0.32(AlGa)0.68As/In0.43Ga0.57As metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,” IEEE Electron Device Letters, vol. 21, pp.5 – 8, 2000.
[62]M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, H. Tokuda, “InAlAs/InGaAs metamorphic low-noise HEMT,” IEEE Microwave and Guided Wave Letters, vol. 7, pp. 6 – 8, 1997.
[63]D. C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “High performance 0.35 μm gate-length monolithic enhancement/depletion-mode metamorphic In0.52Al0.48As/In0.53Ga0.47 As HEMTs on GaAs substrates,” IEEE Electron Device Letters, vol. 22, pp. 364 – 366, 2001.
[64]D. C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate with fT over 200 GHz,” Electron Devices Meeting, IEDM Technical Digest. International., pp. 783 – 786, 1999.
[65]K .C. Hwang, P.C. Chao, C. Creamer, K.B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT's,” IEEE Electron Device Letters, vol. 20, pp. 551 – 553, 1999.
[66]S. R. Bahl, M. H. Leaty, and J. A. del Alamo, "Mesa-Sidewall Gate Leakage in InAlAs/InGaAs Heterostructure Field-Effect Transistors," IEEE TRANSCTIONS ON ELECTRON DEVICES, vol. 39, pp. 2037-2043, 1992
[67]S.R. Bahl, and J. A. D. Almao, “Breakdown voltage enhancement from channel quantization in InAlAs/n+-InGaAs HFET’s,” IEEE Electron Device Lett., vol. 9, pp. 123-125, 1992.
[68]R. E. Thoren, S. L. Su, R. J. Fischer, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkos, “Analysis of camel gate FET’s,” IEEE Trans. Electron Devices, vol. 30, pp. 212-216, 1983.
[69]W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
[70]G. Gillman, B. Vinter, E. Barbier, and T. Tardella, “Experimental and theoretical mobility of electrons in delta-doped GaAs,” Appl. Phys. Lett., vol. 52, pp. 972-974, 1988.
[71]H. Q. Zheng, G. I. Ng, Y. Q. Zhang, K. Radhakrishnan, K. Y. Lee, P. Y. Chee, M. S. Tse, J. X. Weng, and S. F. Yoon, “High linearity, current drivability and fmax using pseudomorphic GaAs double-heterojunction HEMT (DHHEMT),” Proc. IEEE International Conference on Semiconductor Electronics, pp. 12-14. 1996.
[72]E. F. Schubert, J. E. Cunningham, and W. T. Tsang, “Electron-mobility enhancement and electron-concentration enhancement in ��-doped n-GaAs at T=300 K,” Solid State Commun., vol. 63, pp. 591-594, 1987.
[73]W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double ��-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, vol. 41, pp. 456-457, 1994.
[74]K. H. Yu; H. M. Chuang; K. W. Lin; S. Y. Cheng; C. C. Cheng; J. Y. Chen; and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT)” IEEE Trans. Electron Device., vol. 49, pp. 1687-1693, 2002.
[75]Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP-MOCVD grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
[76]W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 804-809, 1995.
[77]K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys., vol. 60, pp. 1223-1224, 1986.
[78]H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
[79]W. Gao, P. R. Berger, R. G. Hunsperger, G. Zydzik, W. W. Rhodes, H. M. O’Bryan, D. Sivco, and A. Y. Cho, “Transparent and opaque Schottky contacts on undoped In0.52Al0.48As grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 66, pp. 3471-3473, 1995.
[80]Donald A. Neamen., Semiconductor physics and devices : basic principles, 3rd ed. McGraw-Hill Companies, 2003
[81]C. S. Lee, Y. J. Chen, W. C. Hsu, K. H. Su, J. C. Huang, D. H. Huang, and C. L. Wu, "High-temperature threshold characteristics of a symmetrically graded InAlAs/InxGa1-xAs/GaAs metamorphic high electron mobility transistor", Appl. Phy. Lett., vol. 88, 223506, 2006
[82]K. J. Chen, T. Enoki, K. Maezawa, K. Arai and M. Yamamoto, ”High-performance InP-based enhancement-mode HEMT’s using non-alloyed ohmic contacts and Pt-based buried-gate technologies,” IEEE Trans. Electron. Device, vol. 43, p. 252, 1996.
[83]L. H. Chu, E. Y. Chang, L. Chang, Y. H. Wu, S. H. Chen, H. T. Hsu, T. L. Lee, Y. C. Lien, and C.Y. Chang, “Effect of Gate Sinking on the Device Performance of the InGaP/AlGaAs/InGaAs Enhancement-Mode PHEMT,” IEEE Electron Device Lett., vol. 28, pp. 82-85, 2007
[84]Y. S. Linz and Y. L. Hsieh, "Temperature-Dependent Characteristics of InGaP/InGaAs/GaAs High-Electron Mobility Transistor Measured between 77 and 470 K," Journal of The Electrochemical Society, vol.152, pp.G778-G780, 2005.
[85]S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. New York: Wiley, 1985, pp. 250
[86]呂學士編譯, 本城和彥原著,“微波通訊半導體電路”, 全華科技股份有限公司, 2001
[87]Behzad Razavi, RF Microelectronics, Prentice-Hall, 1998, chap. 2
[88]Tri T. Ha, Solid-State Microwave Amplifier Design, John Wiley and Sons, 1991, chap. 6
[89]Robert J. Weber, Introduction to Microwave Circuits: Radio Frequency and Design Applications, the Institute of Electrical and Electronics Engineers, 2001
[90]H. C. Chiu, S. C. Yang, F. T. Chien, and Y. J. Chan, ”Improved Device Linearity of AlGaAs/InGaAs HFETs by a Second Mesa Etching,” IEEE Electron Device Letters, vol. 23, pp. 1-3, 2002
[91]K. Elgaid, H. McLelland, M. Holland, D. A. J. Moran, C. R. Stanley, and I. G. Thayne, “50-nm T-Gate metamorphic GaAs HEMTs with fT of 440 GHz and noise figure of 0.7 dB at 26 GHz,” IEEE Electron Device Lett., vol. 26, pp. 784–786, 2002.
[92]D. An, B. H. Lee, B. O. Lim, M. K. Lee, S. C. Kim, J. H. Oh, S. D. Kim, H. M. Park, D. H. Shin, and J. K. Rhee, “High switching performance 0.1 μm metamorphic HEMTs for low conversion loss 94-GHz resistive mixers,” IEEE Electron Device Lett., vol. 26, pp. 707–709, 2005.
[93]W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, K. H. Yu, and S. C. Feng, “Application of a New Airbridge-Gate Structure for High-Performance Ga0.51In0.49P/In0.15Ga0.85As/GaAs Pseudomorphic Field-Effect Transistors”, Applied Physics Lett., vol. 74, pp. 1996-1998, 1999
[94]W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, W. S. Lour, and W. C. Liu, “Influences of the Mesa-Sidewall Effect on Ga0.51In0.49P/In0.15Ga0.85As Pseudomorphic Transistors”, Semicond. Sci. Technol., vol. 14, pp. 887-891,1999
[95]M. K. Hsu, H. R. Chen, S. Y. Chiou, W. T. Chen, G. H. Chen, Y. C. Chang, and W. S. Lour, “Gate-metal formation-related kink effect and gate current on In0.5Al0.5As/In0.5Ga0.5As metamorphic high electron mobility transistor performance”, Appl. Phy. Lett., vol. 89, 033509, 2006
[96]M. K. Hsu, H. R. Chen, S. Y. Chiu, W. T. Chen, W. C. Liu, J. H. Tasi, and W. S. Lour, “Characteristics of mesa- and air-type In0.5Al0.5As/In0.5Ga0.5As metamorphic HEMTs with or without a buried gate”, Semicond. Sci. Technol., vol. 22, pp. 35-42, 2007
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top