(44.192.112.123) 您好!臺灣時間:2021/03/07 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張玄昇
研究生(外文):Hsuan-Sheng Chang
論文名稱:以無電鍍法研製砷化銦鋁/砷化銦鎵/砷化鎵變晶性高電子移動率電晶體
論文名稱(外文):Fabrication of InAlAs/InGaAs/GaAs Metamorphic High Electron Mobility Transistors(MHEMTs) with Electroless Plated Technology
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chao Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:109
中文關鍵詞:無電鍍變晶性高電子移動率電晶體異質結構場效電晶體
外文關鍵詞:Electroless PlatingMHEMTHFET
相關次數:
  • 被引用被引用:1
  • 點閱點閱:263
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們以分子束磊晶法成長及研製砷化銦鋁/砷化銦鎵/砷化鎵變晶性高電子移動率電晶體。由於許多研究指出高能量的物理真空鍍膜技術容易對元件造成熱破壞,使得費米能階幾乎釘在某一定值,蕭特基能障高度也相對較低,並且不會隨著不同金屬功函數變動。為了改善費米能階釘住效應對元件的影響,我們於本論文中使用無電鍍法沉積閘極金屬,以期獲得良好的蕭特基接面。
為了探討無電鍍金屬膜對元件所造成的影響,我們對薄膜的各種特性做分析和測試,包含表面粗度分析,晶粒大小、厚度、電阻率量測,以及退火和附著力的測試。
最後,比較無電鍍與傳統熱蒸鍍之元件電性,包含直流和微波特性。在室溫下,無電鍍元件展現良好的直流特性,但隨著溫度由300K 升至420K 時,其退化率相對明顯,此外熱蒸鍍元件在微波的表現上,仍然是比較佔有優勢。
In this thesis, InAlAs/InGaAs/GaAs metamorphic high electron mobility transistors (MHEMTs) grown by molecular beam epitaxy (MBE) system have been fabricated and investigated. Some reports have illustrated that high energy physical vacuum depositions easily cause the thermal damage. Fermi-level is almost pinned at constant value instead of varied with different metal work functions. Result in lower Schottky barrier height of the devices. In order to eliminate Fermi-level pinning effect, electroless plated technology is employed to deposit gate metal to obtain well-behaved Schottky contact interface.
In order to investigate how electroless plated metal film influent the device, some tests and analysis to the metal film are demonstrated, including surface roughness analysis, grain size, thickness and resistivity measurement, and annealing and adhesion tests.
Finally, the characteristics of the devices with electroless plating and conventional thermal evaporation, including DC and microwave performance are compared. At room temperature, the device with electroless plating exhibits better DC performance but apparent temperature degradation rate with temperature increasing from 300K to 420K. In addition, the device with thermal evaporation still exhibits superior microwave performance.
Abstract
Table Captions
Figure Captions
Chapter 1 Introduction...................................1
Chapter 2 Process and Analysis of Electroless Plated Technology on InAlAs/InGaAs/GaAs Metamorphic High Electron Mobility Transistors (MHEMTs)
2-1. Introduction.........................................5
2-2. Electroless Plating Operation Processes..............6
2-3. Electroless Plated Pd film analysis..................8
2-3-1. Grain size.........................................8
2-3-2. Surface roughness..................................8
2-3-3. Thickness..........................................9
2-3-4. Resistivity ........................................9
2-3-5. Annealing test.....................................9
2-3-6. Adhesion test.....................................10
2-4. Conclusion..........................................11
Chapter 3 InAlAs/InGaAs/GaAs Metamorphic High Electron Mobility Transistor (MHEMT) with Electroless Plated Pd-Gate
3-1. Introduction........................................12
3-2. Device Fabrication..................................13
3-3. Experimental Results and Discussion.................15
3-3-1. DC Performance....................................15
3-3-2. Microwave Characteristics.........................18
3-4. Summary.............................................19
Chapter 4 Comparative Studies of the Device Properties of InAlAs/InGaAs/GaAs Metamorphic High Electron Mobility Transistors (MHEMTs) with Electroless Plated and Thermal Evaporated Pd-Gates
4-1. Introduction........................................20
4-2. Device Fabrication..................................21
4-3. Experimental Results and Discussion.................22
4-3-1. DC Performance....................................22
4-3-2. Microwave Characteristics.........................26
4-4. Summary.............................................27
Chapter 5 Conclusion and Prospect
5-1. Conclusion..........................................29
5-2. Prospect............................................30
[1]Y. F. Yang, C. C. Hsu, S. Yang, and Y. K. Chen, “Comparison of GaInP/GaAs Heterostructure-Emitter Bipolar Transistors and Heterojunction Bipolar Transistors,” IEEE Trans. Electron Devices, Vol. 42, No. 7, July 1995.
[2]P. Ma, Y. Yang, P. Zampardi, R. T. Huang, and M. F. Chang, “Modulating HBT’s Current Gain by Using Externally Biased On-Ledge Schottky Diode,” IEEE Electron Device Lett., Vol. 21, No. 8, August 2000.
[3]M. E. Hafizi, C. R. Crowell, and M. E. Grupen, “The DC Characteristics of GaAs/AlGaAs Heterojunction Bipolar Transistors with Application to Device Modeling,” IEEE Trans. Electron Devices, Vol. 37, No. 10, October 1990.
[4]Y. F. Yang, C. C. Hsu, H. J. Ou, T. C. Huang, and S. Yang, “Fabrication and Characteristics of a GaInP/GaAs Heterojunction Bipolar Transistor Using a Selective Buried Sub-Collector,” IEEE Trans. Electron Devices, Vol. 44, No. 12, December 1997.
[5]M. Madihian, K. Honjo, H. Toyoshima, and S. Kumashiro, “The Design, Fabrication, and Characterization of a Novel Electrode Structure Self-Aligned HBT with a Cutoff Frequency of 45 GHz,” IEEE Trans. Electron Devices, Vol. ED-34, No. 7, July 1987.
[6]P. C. Chang, A. G. Baca, N. Y. Li, P. R. Sharps, H. Q. Hou, J. R. Laroche and Ren, “InGaAsN/AlGaAs P-n-p heterojunction bipolar transistor,” Appl. Phys. Lett., Vol. 76, pp. 2788-2790, 2000.
[7]S. Y. Cheng, W. C. Wang, W. L. Chang, J. Y. Chen, H. J. Pan and W. C. Liu,“A new InGaP GaAs double delta-doped heterojunction bipolar transistor ((DHBT)-H-3),” Thin Solid Films, Vol. 345, pp. 270-272, 1999.
[8]W. C. Liu, W. C. Wang, J. Y. Chen, H. J. Pan, S. Y. Cheng, K. B. Thei and W. L. Chang, “A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics,” IEEE Electron Device Lett., Vol. 20, pp.510-513, 1999.
[9]R. Hajji, and F. M. Ghannouchi, “Small-Signal Distributed Model for GaAs HBT’s and -Parameter Prediction at Millimeter-Wave Frequencies,” IEEE Trans. Electron Devices, Vol. 44, No. 5, May 1997.
[10]K. Yang, J. C. Cowles, J. R. East, and G. I. Haddad, “Theoretical and Experimental DC Characterization of InGaAs-Based Abrupt Emitter HBT’s,” IEEE Trans. Electron Devices, Vol. 42, No. 6, June 1995.
[11]T. Nomura, H. Kambayashi, M. Masuda, S. Ishii, N. Ikeda, J. Lee, and S. Yoshida, “High-Temperature Operation of AlGaN/GaN HFET With a Low ON-State Resistance, High Breakdown Voltage, and Fast Switching,” IEEE Trans. Electron Devices, Vol. 53, No. 12, December 2006.
[12]J. P. Harrang, Robert R. Daniels, H. S. Fuji, H. T. Griem, and Sankar Ray, “High-Performance InAlAs/InGaAs HFET Compatible with Optical-Detector Integration,” IEEE Electron Device Lett., Vol. 12, No. 5, May 1991.
[13]W. S. Lour, W. L. Chang, S. T. Young and W. C. Liu, “Improved breakdown in LP-MOCVD grown n+-GaAs/(p+)-InGaP/n-GaAs heterojunction camel-gate FET," Electron. Lett., Vol. 34, pp. 814-815, 1998.
[14]J. Li, S. J. Cai, G. Z. Pan, Y. L. Chen, C. P. Wen and K. L. Wang,” High breakdown voltage GaN HFET with field plate,” Electron. Lett., Vol. 37 No. 3, February 2001.
[15]X. Z. Dang, R. J. Welty, D. Qiao, P. M. Asbeck, S. S. Lau, E. T. Yu, K. S. Boutros and J. M. Redwing, “Fabrication and characterisation of enhanced barrier AIGaN/GaN HFET,” Electron. Lett., Vol. 35 No. 7, April 1999.
[16]D. R. Greenberg, J. A. Alamo, and Rajaram Bhat, “Impact Ionization and Transport in the InAlAs/n+-InP HFET,” IEEE Trans. Electron Devices, Vol. 42, No. 9, September 1995.
[17]T. Murata, M. Hikita, Y. Hirose, Y. Uemoto, K. Inoue, T. Tanaka, and D. Ueda, “Source Resistance Reduction of AlGaN–GaN HFETs with Novel Superlattice Cap Layer,” IEEE Trans. Electron Devices, Vol. 52, pp.1042 – 1047, June 2005.
[18]F. Scheffer, C. Heedt, R. Reuter, A. Lindner, Q. Liu, W. Prost and F. J. Tegude, “High breakdown voltage InGaAs/lnAIAs HFET using InGaP spacer layer,” Electron. Lett., Vol. 30, No. 2, January 1994.
[19]S. R. Bahl, B. R. Bennett, and J. A. Alamo, “Doubly Strained InAlAs/n+-InGaAs HFET with High Breakdown Voltage,” IEEE Electron Device Lett., Vol. 14, No. 1, January 1993.
[20]W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin and C. H. Yen,“On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage, and high-temperature operations,” IEEE Trans. Electron Devices, Vol. 48, pp. 1522-1530, 2001.
[21]J. S. Tsai,“A Novel InGaP/InGaAs/GaAs Double δ–Doped PHEMT With Camel-Like Gate Structure,” IEEE Electron Device Lett., Vol 24, No. 1, January 2003.
[22]W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, Vol. 42, pp. 804–809, May 1995.
[23]K. H. Yu, H. Mi. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, Vol. 49, pp.1687-1693, 2002.
[24]C. L. Chen, L. J. Mahoney, S. D. Calawa, R. H. Mathews, K. M. Molvar, J. P. Sage and P. A. Maki, ” Planar Integration of a Resonant-Tunneling Diode with PHEMT Using a Novel Proton Implantation Technique,” IEEE Electron Device Lett., Vol. 19, No. 12, December 1998.
[25]T. Mizutani and K. Maezawa, “Temperature dependence of highfrequency performance of AlGaAs/InGaAs pseudomorphic HEMT’s,” IEEE Electron Device Lett., Vol. 13, pp. 8–10, 1992.
[26]H. C. Chiu, C. C. Wei, C. S. Cheng, and Y. F. Wu “Phase-Noise Improvement of GaAs pHEMT K-Band Voltage-Controlled Oscillator Using Tunable Field-Plate Voltage Technology,” IEEE Electron Device Lett., Vol. 29, No. 5, May 2008.
[27]H. C. Chiu, Y. C. Chiang, and C. S. Wu, “High breakdown voltage (Al0.3Ga0.7)0.5In0.5P/InGaAs quasi-enhancement-mode PHEMT with field-plate technology,” IEEE Electron Device Lett., Vol. 26, No. 10, pp. 701–703, October 2005.
[28]D. M. Lin, C. K. Lin, F. H. Huang, J. S. Wu, W. K. Wang, Y. Y. Tsai, Y. J. Chan, Y. C. Wang, “Dual-gate E/E- and E/D-mode AlGaAs/InGaAs PHEMTs for microwave circuit applications,” IEEE Trans. Electron Devices, Vol 54, pp.1818 – 1824, Aug. 2007.
[29]Y. C. Lin, Y. Chang, Yamaguchi, W. C. Wu, C. Y. Chang, “A δ-Doped InGaP/InGaAs PHEMT With Different Doping Profiles for Device-Linearity Improvement,” IEEE Electron Device, Vol 54, pp.1617 – 1625, July 2007.
[30]V. I. Piddyachiy, A. M. Korolev, and V. M. Shulga, “A Very Low-Noise Integrated 3MM-Wave Schottky Diode Mixer and PHEMT IF Amplifier,” Int. J. Infrared Millimeter Waves, Vol. 26, No. 10, October 2005.
[31]H. Z. Liu, H. K. Huang, R. J. Chiu, C. K. Chu, C. H. Lin, C. C. Wang, Y. H. Wang, C. H. Chang, C. L. Wu, and C. S. Chang, “A 38-dBm power amplifier using AlGaAs/InGaAs/GaAs PHEMT for S-band applications,” Microwave Opt Technol Lett., Vol. 44, No. 4, February 2005.
[32]B. Aja, M. L. de la Fuente, J. P. Pascual, M. Detratti, and E. Artal, “GaAs PHEMT broadband low-noise amplifier for millimeter-wave radiometer,” Microwave Opt Technol Lett., Vol. 39, pp. 475 – 479.
[33]H. C. Duran, L. Ren, M. Beck, M. A. Py, M. Begems, and W. Bachtold, “Low-frequency noise properties of selectively dry etched InP HEMT's,” IEEE Trans. Electron Devices, Vol. 45, pp. 1219-1225, 1998.
[34]C. Gaquiere, J. Grunenputt, D. Jambon, E. Delos, D. Ducatteau, M. Werquin, D. Theron and P. Fellon, “A high-power W-band pseudomorphic InGaAs channel PHEMT,” IEEE Electron Device Lett., Vol. 26, pp.533-534, 2005.
[35]H.Hasegawa, “Controlled formation of high Schottky barriers on InP and related materials,” Proc. 8th Int. Conf. InP and Related Materials, pp. 11-15 May 1998.
[36]H. Hasegawa, “Fermi level pinning and Schottky barrier height control at metal-semiconductor interfaces of InP and related materials,” Jpn. J. Appl. Phys., Part1, Vol. 38, pp. 1098-1102, 1999.
[37]H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. & Technol. B, Vol. 4, pp. 1130-1138, 1986.
[38]R. N. Rhoda, Trans. Inst. Metal Finish, 36, 82 (1959), I. S. Patent 2, 915, 406(1959).
[39]R. N. Rhoda, “Barrel Plating by Means of Electroless Palladium,” J. Electrochem. Soc., Vol. 108, Issue 7, pp. 707-708, July 1961.
[40]Y. S. Cheng, K. L. Yeung, “Effects of electroless plating chemistry on the synthesis of palladium membranes,” J. Membr. Sci. 182 (2001), pp. 195.
[41]J. P. Collins, J. D. Way, “Preparation and characterization of a composite palladium-ceramic membrane”, Ind. Eng. Chem. Res. 32, 1993.
[42]J. Shu, B. P. A. Grandjean, E. Ghali, S. Kaliaguine, “Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating,” J. Membr. Sci., 77, 1993.
[43]K. L. Yeung, A. Varma, “Novel preparation techniques for thin metal-ceramic composite membranes,” AIChE J., 41, 1995.
[44]K. L. Yeung, R. Aravind, R. J. X. Zawada, J. Szegner, G. Cao, A. Varma, “Nonuniform catalyst distribution for inorganic membrane reactors: theoretical considerations and preparation techniques,” Chem. Eng. Sci., 49, 1994.
[45]B. J. Choudhury, T. J. Schmugge, A. Chang, and R. W. Newton, “Effect of surface roughness on the microwave emission from soil,” J. Geophys. Res., Vol. 84, No. C9, pp. 5699–5706, 1979.
[46]J. R. Wang, P. E. O’Neill, T. J. Jackson, and E. T. Engman, “Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness,” IEEE Trans. Geosci. Remote Sensing, Vol. GE-21, pp. 44–51, January 1983.
[47]T. Mo and T. J. Schmugge, “A parameterization of the effect of surface roughness on microwave emission,” IEEE Trans. Geosci. Remote Sensing, Vol. 25, pp. 47–54, January 1987.
[48]J. Shi, K. S. Chen, Q. Li, Thomas J. Jackson, P. E. O’Neill, and L. Tsang, “A Parameterized Surface Reflectivity Model and Estimation of Bare-Surface Soil Moisture With L-Band Radiometer,”IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 12, December 2002
[49]H. Yamagishi, “Barrier height of metal/InP Schottky contacts with interface oxide layer,” Jpn. J Appl. Phys., Vol. 25, pp.997-1001, 1988.
[50]J. P. Xu, P. T. Lai, D. G. Zhong, and C. L. Chan, “Improved Hydrogen-Sensitive Properties of MISiC Schottky Sensor with Thin NO-Grown Oxynitride as Gate Insulator,” IEEE Electron Device Lett., Vol. 24, No. 1, January 2003.
[51]P. Tobias, A. Baranzahi, A. L. Spetz, O. Kordina, E. Janzén, and I. Lundström, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., Vol. 18, pp. 287–289, June 1997.
[52]S. Chakraborty and P. T. Lai, “MOS characteristics of NO-grown oxynitrides on n-type 6H-SiC,” Microelectron. Reliab., Vol. 42, No. 3, pp. 455-458, March 2002.
[53]J. Kolnik, J. Ivanco and M. Ozvold, “Metal thin insulator silicon Schottky diodes with plasma deposited silicon-nitride interfacial layer,” Phys. Status Solidi A-Appl. Res., Vol. 130, pp. 245-251, 1992.
[54]T. Sugimura, T. Tsuzuku, T. Katsui, Y. Kasai, T. Inokuma, S. Hashimoto, K. Iiyama and S. Takamiya, “A preliminary study of MIS diodes with nm-thin GaAs-oxide layers,” Solid-State Electron., Vol. 43, pp. 1571-1576, 1999.
[55]Y. K. Su, W. C. Chen, R. W. Chuang, S. H. Hsu, and B. Y. Chen, “InGaAsN Metal–Semiconductor–Metal Photodetectors with Transparent Indium Tin Oxide Schottky Contacts,” J. Appl. Phys., Vol. 46, No. 4B, pp. 2373–2376, 2007.
[56]J. Kolnik, J. Ivanco, M Ozvold, F. Wyczisk and J. Olivier, “Increased thermal-stability of Au/GaAs metal-insulator-semiconductor Schottky diodes with silicon-nitride interfacial layer deposition by remote plasma-enhanced chemical-vapor deposition,” J. Appl. Phys., Vol. 73, pp. 5075-5080, 1993.
[57]G. Eftekhari, “Electrical characteristics of selenium-treated GaAs MIS Schottky diodes,” Semicond. Sci. Technol., Vol. 8, pp. 409-411, 1993.
[58]P. H. Lai, C. W. Chen, C. I Kao, S. I Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Influences of Sulfur Passivation on Temperature-Dependent Characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, Vol. 53, No. 1, January 2006.
[59]S. Y. Cheng, S. I Fu, T. P. Chen, P. H. Lai, R. C. Liu, K. Y. Chu, L. Y. Chen, and W. C. Liu, “The effect of sulfur treatment on the temperature-dependent performance of InGaP/GaAs HBTs,” IEEE Trans. on Device and Materials Reliability, Vol. 6, pp. 500-508, 2006.
[60]C. Y. Chen, S. I. Fu, C. H. Tsai, C. Y. Chang, and W. C. Liu, “Characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with sulfur passivation”, Extended Abstr, The 5th Int. Vacuum Electron Sources Conference (IVESC2004), Beijing, China, pp. 242-244, 2004.
[61]S. W. Tan, H. R. Chen, M. Y. Chu, W. T. Chen, A. H. Lin, M. K. Hsu, T. S. Lin, and W. S. Lour, “Comparisons between InGaP/GaAs heterojunction bipolar transistors with a sulfur- and an InGaP-passivated base surface,” Superlattices Microstruct., Vol. 37, No. 6, pp. 401–409, June 2005.
[62]K. S. Suh, J. L. Lee, H. H. Park, C. H. Kim, J. J. Lee, and K. S. Nam,“Passivation effect of (NH4)2SX treatment on GaAs surface before photo-resist and O2 processes,” Mater. Sci. Eng., vol. 37, no. 1, pp. 172– 176, February 1996.
[63]J. X. Sun, D. J. Seo, W. L. O’brien, F. J. Himpsel, A. B. Ellis and T. F. Kuech, “Chemical bonding and electronic properties of SeS2-treated GaAs (100),” J. Appl. Phys., Vol. 85, pp. 969-977, 1999.
[64]C. Y. Chen, S. I. Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of Surface Sulfur Treatments on the Temperature-Dependent Characteristics of Heterojunction Bipolar Transistors (HBTs)” IEEE Trans. Electron Devices, Vol. 51, pp. 1963-1971, 2004.
[65]A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, “Unpinned gallium oxide/GaAs interface by hydrogen and nitrogen surface plasma treatment,” Appl. Phys. Lett., Vol. 54, No. 4, pp. 332–334, January 1989.
[66]P. W. Li, "Chemical and electrical characterization of AlGaAs/GaAs heterojunction bipolar transistors treated by electron cyclotron resonance plasmas" J. Appl. Phys., Vol. 60, No. 16, pp. 1996-1998 (1992) April.
[67]C. Y. Wu, "Influence of NH3 plasma pretreatment on the properties of plasma enhanced chemical vapor deposited SiON on GaAs Interface", J. Appl. Phys., 60 (6) pp. 2050-2057, September 1986.
[68]J. S. Herman and F. L. Terry, “Plasma passivation of gallium-arsenide,” J. Vac. Sci. & Technol. A, Vol. 11, pp. 1094-1098, 1993.
[69]J. M. Moison, et al. “Stabilization and removal of the native oxides at the surface of (100) InP by low-pressure exposure to NH3”, J. Appl. Phys. 66 (8) pp. 3824-3838, October 1989.
[70]Y. G. Wang and S. Ashok, “A study of metal GaAs interface modification by hydrogen plasma,” J. Appl. Phys., Vol. 75, pp. 2447-2454, 1994.
[71]H. C. Cheng, F. S. Wang, and C. Y. Huang, “Effects of NH3 Plasma Passivation on N-Channel Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, Vol. 44, No. 1, January 1997.
[72]N. H. Nickel, A. Yin, and S. J. Fonash, “Influence of hydrogen and oxygen plasma treatments on grain-boundary defects in polycrystalline silicon,” Appl. Phys. Lett., Vol. 65, pp. 3099–3101, 1994.
[73]T. Kimura, H. Hasegawa, T. Sato and T. Hashizume, “Sensing Mechanism of InP Hydrogen Sensors Using Pt Schottky Diodes Formed by Electrochemical Process,” J. Appl. Phys. 45, pp. 3414-3422, 2006.
[74]T. Hashizume, G. Schweeger, N. J. Wu and H. Hasegawa, “Novel in-situ electrochemical technology for formation of oxide-free and defect-free Schottky contact to GaAs and related low-dimensional structures,” J. Vac. Sci. & Technol. B, Vol. 12, pp. 2660-2666, 1994.
[75]S. Uno, T. Hashizume, S. Kasai, N. J. Wu and H. Hasegawa, “0.86 eV platinum Schottky barrier on indium phosphide by in situ electrochemical process and its application to MESFETs,” Jpn. J. Appl. Phys., Part 1, Vol. 35, pp. 1258-1263, 1996.
[76]T. Sato, S. Uno, T. Hashizume and H. Hasegawa, “Large Schottky barrier heights on indium phosphide-based materials realized by in-situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 36 , pp. 1811-1817, 1997.
[77]N. J. Wu, T. Hashizume and H. Hasegawa, “Formation of oxide-free nearly ideal Pt/GaAs Schottky barriers by novel in situ photopulse- assisted electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 33 , pp. 936-941, 1994.
[78]T. Hashizume, H. Hasegawa, T. Sawada, A. Grűb and H. L. Hartnagel, “Deep level characteristics of submillimeter-wave GaAs Schottky diodes produced by a novel in situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 32, pp. 486-490, 1993.
[79]T. Okumura, S. I. Yamamoto and M. Shimura, “GaAs Schottky diodes with ideality factor of unity fabricated by in situ photoelectrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 32 , pp. 2626-2631, 1993.
[80]N. J. Wu, T. Hashizume and H. Hasegawa, “Formation of oxide-free nearly ideal Pt/GaAs Schottky barriers by novel in-situ photopluse-asisted electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 33, pp. 936-941, 1994.
[81]N. J. Wu, T. Hashizume, H. Hasegawa and Y. Amemiya, “Schottky contacts on n-InP with high barriers and reduced Fermi-level pinning by a in-situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol.34, pp. 1162-1167, 1995.
[82]H. Hasegawa, T. Sato and T. Hashizume, “Evolution mechanism of nearly pinning-free platinum/n-type indium phosphide interface with a high Schottky barrier height by in situ electrochemical process,” J. Vac. Sci. & Technol. B, Vol. 15, pp. 1227-1235, 1997.
[83]T. Sato, C. Kaneshiro and H. Hasegawa, “The strong correlation between interface microstructure and barrier height in Pt/n-InP Schottky contacts formed by an in situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 38 , pp. 1103-1106, 1999.
[84]T. sato, S. Kasai and H. Hasegawa, “Current transport and capacitance-voltage characteristics of GaAs and InP nanometer-sized Schottky contacts formed by in situ electrochemical process,” Appl. Surf. Sci., Vol. 175, pp. 181-186, 2001.
[85]P. Allongue and E. Souteyrand, “Schottky barrier formation of various metals on n-GaAs (100) by electrochemical deposition,” J. Vac. Sci. & Technol. B, Vol. 5, pp. 1644-1649, 1987.
[86]J. M. Woodall and J. L. Freeouf, “GaAs metallization: some problems and trends,” J. Vac. Sci. & Technol., Vol. 19, pp. 794-798, 1981.
[87]H. Okada, T. Hashizume and H. Hasegawa, “Transport Characterization of Schottky In-Plane Gate AlGaAs/GaAs Quantum Wire Transistors Realized by twltibIn-Situ Electrochemical Process,” Jpn. J. Appl. Phys. 34, pp. 6971-6976, 1995.
[88]S. Uno, T. Hashizume, S. Kasai, N. J. Wu and H. Hasegawa, “0.86 eV platinum Schottky barrier on indium phosphide by in situ electrochemical process and its application to MESFETs,” Jpn. J. Appl. Phys., Part 1, Vol. 35, pp. 1258-1263, 1996.
[89]D. C. Dumka, W. E. Hoke, P. J. Lemonias, G. Cueva, I. Adesida, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate with fT over 200 GHz,” IEEE Electron. Lett., Vol. 35, pp. 1854 – 1856, 1999.
[90]F. Benkhelifa, M. Chertouk, M. Walther, R. Losch, and G. Weimann, “Metamorphic HEMT 0.5 μm low cost high performance process on 4" GaAs substrates,” Indium Phosphide and Related Materials, pp. 290-293, 2000.
[91]D. C. Dumka, H. Q. Tserng, M. Y. Kao, E. A. Beam, and P. Saunier, “High-performance double-recessed enhancement-mode metamorphic HEMTs on 4-in GaAs substrates,” IEEE, Electron Device Lett., Vol. 24, pp.135-137, 2003.
[92]W. C. Hsu, Y. J. Che, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in δ-doped In0.425Al0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE, Electron Device Lett., Vol. 26, pp. 59-61, 2005.
[93]P. Roblin, L. Rice, S. B. Bibyk, and H. Morkoc, “Nonlinear parasitic in MODFET’s and MODFET I-V characteristics,” IEEE Trans. Electron. Devices, Vol. 35, pp. 1207-1214, 1988.
[94]C. S. Whelan, W. F. Hoke, R. A. McTaggart, M. Lardizabal, P. S. Lyman, P. F. Marsh, T. E. Kazior, “Low noise In0.32(AlGa)0.68As/In0.43Ga0.57As metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,” IEEE Electron Device Lett., Vol. 21, pp. 5-8, 2000.
[95]P. M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry, and A. W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials, pp. 9-14, 2001.
[96]H. Happy, S. Bollaert, H. Foure, and A. Cappy, “Numerical analysis of device performance of metamorphic InyAl1-yAs/InxGa1-xAs (0.3≤x≤0.6) HEMTs on GaAs substrate,” IEEE Transactions, Electron Devices, Vol. 45, pp. 2089-2095, 2003.
[97]K. Yuan and K. Radhakrishnan, “High breakdown voltage In0.52Al0.48As/ In0.53Ga0.47As metamorphic HEMT using InxGa1-xP graded buffer,” Indium Phosphide and Related Materials, pp. 161-164, 2002.
[98]M. K. Hsu, H. R. Chen, S. Y. Chiu, W. T. Chen, W. C. Liu, J. H. Tsai, and W. S. Lour, “Characteristics of mesa- and air-type In0.5Al0.5As/In0.5Ga0.5As metamorphic HEMTs with or without a buried gate,” Semicond. Sci. Technol., Vol. 22, pp. 35-42, 2007.
[99]C. W. Chen, P. H. Lai, W. S. Lour, D. F. Guo, J. H. Tsai, and W. C. Liu, “Temperature dependences of an In0.46Ga0.54As/In0.42Al0.58As based metamorphic high electron mobility transistor (MHEMT),” Semicond. Sci. Technol., Vol. 21, pp. 1358-1363, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔