跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許文義
研究生(外文):Wen-i Hsu
論文名稱:以金屬觸發蝕刻製備單晶矽奈米線及其場發射特性研究
論文名稱(外文):Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching
指導教授:王水進
指導教授(外文):Shui-jinn Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:83
中文關鍵詞:矽奈米線多孔矽奈米線
外文關鍵詞:silicon nanowiresporous silicon nanowires
相關次數:
  • 被引用被引用:1
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用一種簡單、快速、低成本的方式,在接近室溫下利用金屬觸發蝕製備大面積及垂直排列之單晶矽奈米線陣列。此種蝕刻方式與所使用之矽基板結晶方向與參雜型態無太大關係,吾人可依據所需之矽奈米線選擇對應之結晶型態、參雜特性之矽基板,製得所需之矽奈米線陣列以進行元件應用。在蝕刻成長過程中,適當的調變蝕刻參數(溶液濃度、時間與溫度等),可進行矽奈米結構之調變。本論文係分別以p型及n型矽基板調變不同蝕刻參數(溶液濃度、時間與溫度等)進行矽奈米線的成長,並將所成長之矽奈米線進行場發射特性量測。實驗結果發現,p型矽基板以0.03 molL-1硝酸銀、5 molL-1氫氟酸溶液、蝕刻溫度90oC、蝕刻時間180 min時所成長之矽奈米線,由於同時具有較細尖錐且較適化之矽奈米線密度,可有效減輕電場屏蔽效應,因而擁有較佳之場發射特性:啟動電場強度Eon = 2.25 V/um (@ 10 uA/cm2)、最大電流密度Jmax = 3.5 mA/cm2 及場發射增強因子B= 4233。本論文另以一種兩階段蝕刻成長方式於表面成長類似多孔表面之多孔矽奈米線。由於矽奈米線表面具有奈米尺度之孔洞結構強烈增加量子侷限效應,並發出波長約為670 nm之高強度橘紅光。多孔矽奈米線也表現出較無多孔矽奈米線更優越場發射特性。P型矽奈米線在經過3分鐘二次蝕刻後所形成之多孔矽奈米線於場發射量測上表現出啟動電場Eon = 2.7 V/um (@ 1 0 mA/cm2)、當電場強度為5.83 V/um時發射電流密度可達1 mA/cm2且增強因子B = 2650。本論文所製備單晶矽多孔奈米線陣列,具有高寬比(high aspect-ratio)及高表面積比(high surface-to-volume ratio),預期於場發射極、紫外光檢測器與太陽能電池等材料之應用上極具潛力。
In this study, a simple, fast, low-cost technique for rapidly producing large-area, aligned single-crystalline SiNW arrays on Si wafers by metal-induced etching at near room temperature were demonstrated. The etching technique shows little dependence on the orientation or doping type of the Si wafer. The nanostructure of SiNWs could be modified by appropriate modifying the etching parameter (solution concentration, etching time and temperature) during the etching process. Device application of SiNWs arrays with desirable axial crystallographic orientation and doping characteristics could be readily obtained by using this etching technique. To prepare preparation and characterization of p-type and n-type SiNWs with different metal-induced etching parameters (such as solution concentration, etching time and temperature) were presented. Experimented results revealed that the p-type SiNWs prepared in the solution of AgNO3 and HF is 0.03 molL-1 and 5molL-1, respectively, at 90oC for 60 min have the comparably best field emission characterization with a turn on electric field Eon = 2.25 V/um (@ 10 uA/cm2) and the maximum current density is Jmax = 3.5 mA/cm2 and a field emission factor is B= 4233, which due to the reduction of electric field emission screening effect of the thinner tip and appropriate density of the as-prepared SiNWs. Vertical-aligned Porous silicon nanowires (SiNWs) with a porous-like surface were also prepared in this study by a two-step etching process. Strong orange-red light emission at around 670 nm were observed, which is primarily due to a strong enhancement in quantum confinement effect arising from the nano-scaled porous morphologies of SiNWs. The porous SiNWs also demonstrated better field emission (FE) characteristics as compared to those without porous surface (i.e., non-porous SiNWs). A turn-on field intensity (Eon) of 2.7 V/um, an emission current density up to 1 mA/cm2 at around 5.83 V/um, and an enhancement factor (B) of around 2650 were achieved from SiNWs after subjected to a 3-min etching to form porous surface were found. It is expected that porous SiNWs with the merits of high aspect-ratio and high surface-to-volume ratio could be a potential material for the applications of FE emitters, UV detectors, and solar cells.
中文摘要 i
英文摘要 iii
誌謝 vi
目錄 vi
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 場發射理論(FIELD EMISSION THEORY) 8
1-3 場發射顯示器技術 12
1-4 電場屏蔽效應 19
1-5 一維矽奈米線 21
第二章 金屬觸發感應蝕刻製備矽奈米線 24
2-1 無電電鍍蝕刻機制 24
2-2 金屬觸發蝕刻成長機制 29
2-3 光激發螢光( PHOTOLUMINESCENCE, PL )原理 33
第三章 實驗流程、步驟與設備 36
3-1 前言 36
3-2 實驗流程與步驟 37
3-2-1 矽奈米線製備流程 37
3-2-2 金屬觸發蝕刻製備單晶矽奈米線 39
3-2-3 製做奈米線參數 40
3-3 實驗設備概述 42
3-3-1 濕蝕刻系統 42
3-3-2 場發射量測系統 43
3-3-3 表面結構與材料分析 45
第四章 結果與討論 49
4-1 矽奈米線 49
4-1-1 矽奈米線表面結構 49
4-1-1-1 蝕刻溫度與時間之影響 49
4-1-1-2 硝酸銀濃度之影響 52
4-1-1-3 氫氟酸濃度之影響 52
4-1-2 矽奈米線之EDS及XRD分析 53
4-1-3 矽奈米線之TEM分析 53
4-2 場發射特性量測及分析 60
4-3 多孔矽奈米線之場發射特性及光機發光特性量測與分析 68
4-3-1 多孔矽奈米線製備 68
4-3-2 p型多孔矽奈米線 69
4-3-3 n型多孔矽奈米線 73
4-3-4 n、p型多孔矽奈米線之比較 75
第五章 結論及未來工作 77
5-1 結論 77
5-2 未來工作 78
參考文獻 79
[1]馮明憲, 陳盈佳,“顯示技術產業發展回顧與展望”, 電子月刊第五卷第七期, 七月1999.
[2]馮文信, “LED之太陽能應用產品發展介紹”,電機月刊第十二卷第五期, 五月2002.
[3]謝煜弘, “使用白光LED研製新型省電燈具”, 電子月刊第十卷第七期, 七月2004.
[4]何斌明, 劉南洲, “電漿顯示器的展現況與未來展望”, 電子月刊第七卷第八期, 六月2001.
[5]陳文河, “21世紀桌上型顯示器之世代交替-TFT-LCD v.s. CRT之探討”, 電子月刊第八卷第八期, 八月2002.
[6]楊琛喻, 卓庭毅, 吳忠幟, “平面顯示器的新星-有機發光二極體”, 電子月刊第十卷第六期, 六月2004.
[7]葉永輝, “主動式有機電激發光二極體顯示技術發展現況”, 電子月刊第十卷第八期, 八月2004.
[8]陳志強, 黃文鈺, 陳丕夫, “面板的完美組合-主動式有機發光二極體”, 電子月刊第九卷第四期, 四月2003.
[9]沈觀葆, “TFT-LCD平面顯示器製程設備介紹”, 機械月刊第二十九卷第九期, 九月2003.
[10]M. T. Chen, C. C. Lin, “Comparison of TFT-LCD and CRT on visual recongnition and subjective preference”, International Journal of Industrial Ergonomics vol. 34, pp. 167-174, 2004.
[11]張德安, 鄭玟玲, 「電漿平面顯示器」, 全華科技圖書股份有限公司, 2001.
[12]葉永輝,“主動式有機電激發光二極體顯示技術發展現況”, 電子月刊第十卷第八期, 八月 2004.
[13]C. B. Lee, A. Uddin, X. Hu, T. G. Andersson, “Study of Alq3 thermal evaporation rate effects on the OLED”, Materials Science Engineering B, vol. 112, pp. 14-18, 2004.
[14]A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, M. Tsuchida, “Flexible OLED Displays Using Plastic Substrates”, IEEE Journal of Selected Topics in Quantum Electronic, vol. 10, NO. 1, 2004.
[15]陳志強, 黃文鈺, 陳丕夫, “面板的完美組合-主動式有機發光二極體”, 電子月刊第九卷第四期, 四月2003.
[16]何斌明, 劉南洲, “電漿顯示器的展現況與未來展望”, 電子月刊第七卷第八期, 六月2001.
[17]施敏,“半導體元件物理與製作技術”, 國立交通大學出版社, 2002.
[18]S. J. Lin, S. L. Lee, J. H. Wang, C. S. Chamgand, and H. Y. Wen, “Effects of Local Facet and Lattice Damage on Nucleation of Diamond Grown by Microwave Plasma Chemical Vapor Deposition”, Appl. Phys. Lett., vol. 60, p. 1559, 1992.
[19]Y. Chen, S. Patel, Y. Ye, D. T. Shaw, and L. Guo, “Field emission from aligned high-density graphitic nanofibers”, Appl. Phys. Lett., vol. 73, p. 2119, 1998.
[20]W. A. de Heer, A. Chatelain, and D. Ugrate, “A Carbon Nanotube Field-Emission Electron Source”, Science, vol. 270, p. 1179, 1995.
[21]Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields”, Appl. Phys. Lett., vol. 70, p. 3308, 1997.
[22]P. G. Collins, and A. Zettl, “Unique characteristics of cold cathode carbon-nanotube-matrix field emitters”, Phys. Rev. B, vol. 55, p. 9391, 1997.
[23]Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yua, “Morphological effects on the field emission of ZnO nanorod arrays”, Appl. Phys. Lett., vol. 86, pp. 203-115, 2005.
[24]T. Utsumi, “Vacuum microelectronics: what's new and exciting”, IEEE Trans. Electron Dev., vol. 38, p. 2276, 1991.
[25]N. Koshida, B. Gelloz, A. Kojima, T. Migita, Y. Nakajima, T. Kihara, T. Ichihara, Y. Watabe, T. Komoda, “Photon, electron and ultrasonic emission from nanocrystalline porous silicon devices”, Materials Research Society Symposium - Proceedings, vol. 737, pp. 801-812, 2003.
[26]T. Oguchi, E. Yamaguchi, K. Sasaki, K. Suzuki, S. Uzawa, K. Hatanaka, “ A 36-inch surface-conduction electron-emitter display (SED)”, 2005 SID International Symposium - Digest of Technical Papers, vol 36, NO. 2, pp. 1929-1931, 2005.
[27]Y. Ishizuka, T. Oyaizu, T. Oguchi, H. Hoshi, E. Yamaguchi, “High-brightness, high-resolution, high-contrast, and wide-gamut of surface-conduction electron-emitter displays”, IDW/AD'05-Proceedings of the 12th International Display Workshops in Conjunction with Asia Display 2005, NO. 2, pp.1655-1658, 2005.
[28]黃宣宜, “SED重燃場發射顯示器話題”, 光連雙月刊58期, 七月2005.
[29]楊素華, 藍慶忠,“奈米碳管發射顯示器”, 科學月刊第382期, 十月2004.
[30]J. Zhu, D. Mao, A. Cao, B. Wei, J. Liang, C. Xu, D. Li, D. Wu, “Carbon nanotubes - New material applied to field emission display”, Proceedings of SPIE - The International Society for Optical Engineering, vol. 3560, pp. 107-110, 1998.
[31]F. Y. Chuang , C. C. Lee, J. D. Lin, J. H. Liao, H. C. Cheng, C. X. Han, J. L. Kwo, W. C. Wang, ” Field emission display using carbon nanotubes as emitters”, Proceedings of SPIE - The International Society for Optical Engineering, vol. 4079, pp. 94-100, 2000.
[32]W. B. Choi, Y. H. Lee, N. S. Lee, J. H. Kang, S. H. Park, H. Y. Kim, D. S. Chung, S. M. Lee, S. Y. Chung and J. M. Kim, “Carbon-Nanotubes for Full-Color Field-Emission Displays”, Jpn. J. Appl. Phys. vol. 39, pp. 2560-2564, 2000.
[33]H. J. Kim, J. H. Han, W. S. Yang, J. B. Yoo, C. Y. Park, I. T. Han, Y. J. Park, Y. W. Jin, J. E. Jung, Ns. Lee, J. M. Kim, “Fabrication of field emission triode using carbon nanotubes”, Materials Science and Engineering C, vol. 16, pp. 27-30, 2001.
[34]T. Komoda, T. Ichihara, Y. Honda, K. Aizawa, N. Koshida, “ Ballistic electron surface-emitting cold cathode by porous polycrystalline silicon film formed on glass substrate”, Materials Research Society Symposium - Proceedings, vol. 638, pp. F4111-F4112, 2001.
[35]L. R. C. Fonseca, P. von Allmen, R. Ramprasad, “Numerical simulation of the tunneling current and ballistic electron effects in field emission devices”, J. Appl. Phys., vol. 87, NO. 5, pp. 2533-2541,2000.
[36]Y. Désières, P. Nicolas, F. Sermet, F. Geffraye, and S. Gidon, “Electron optics and electrical studies of a single Spindt-type field emitter”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.23, Issue 2, pp. 640-644, 2005.
[37]M. Q. Ding, X. Li, G. Bai, J. J. Feng, F. Zhang, F. Liao, “Fabrications of Spindt-type cathodes with aligned carbon nanotube emitters”, Applied Surface Science, vol. 251, pp. 201-204, 2005.
[38]C. Wu, W. Xu, X. Lei, C. Liu, S. Wu, W. Hu, Z. Liang, “Characteristics of an electron source of a surface-conduction electron-emitter display“, Journal of the Society for Information Display, vol. 16, Issue 5, pp.625-630, May 2008.
[39]黃宣宜, “場發射顯示器技術現況與發展”, 光連雙月刊第39期, 五月 2002.
[40]Y.J. Jung, G.H. Son, J.H. Park and Y.W. Kim, Diamond Relat. Mater. vol. 14, p. 2109, 2005.
[41]L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett., vol. 76, p. 2071, 2000.
[42]M.-C. Daniel, D. Astruc, Chem. Rev., vol. 104, pp. 293-346, 2004.
[43]R. M. Crooks, M. Zhao, L. Sun, V. Chechik, L. K. Yeung, Acc. Chem. Res., vol. 34, pp. 181-190, 2001.
[44]L.-S. Li, J. Walda, L. Manna, A. P. Alivisatos, Nano Lett., vol. 6, pp. 557-560, 2002.
[45]J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res., vol. 32, pp. 435-445, 1999.
[46]David C. Bell, Yue Wu, Carl J. Barrelet, Silvija Grade ak, Jie Xiang, Brian P. Timko, Charles M. Lieber, Microscopy Research andTechnique, , vol. 64(5-6), pp. 373-389, 2004.
[47]P. M. Ajayan, Chem. Rev., vol. 99(7), pp. 1787-1800, 1999.
[48]M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, J. Phys. Chem. B. vol. 107(3), pp. 659-663, 2003.
[49]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater., vol. 15(5), pp. 353-389, 2003.
[50]E. C. Walter, R. M. Penner, H. Liu, K. H. Ng, M. P. Zach, F. Favier, Surface and Interface Analysis, vol. 34(1), pp. 409-412, 2002.
[51]Z. L. Wang, Adv. Mater., vol. 15(5), pp. 432-436, 2003.
[52]Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett., vol. 3(2), pp. 149-152, 2003.
[53]Z. Zhong, F. Qian, D. Wang, C. M. Lieber, Nano Lett., vol. 3(3), pp. 343-346, 2003.
[54]張俊彥,鄭晃忠,積體電路製程及設備技術手冊,中華民國產業發展協進會,台北市,1997.
[55]B. Zheng, Y. Wu, P. Yang, J. Liu, Adv. Mater., vol. 14(2), pp. 122-124, 2002.
[56]R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., vol. 4, pp. 89-91, 1964.
[57]Y. Wu, P. Yang, J. Am. Chem. Soc., vol. 123(13), pp. 3165-3166. 2001.
[58]T. I. Kamins, R. S. Williams, Y. Chen, Y. Chang, Y. A. Chang, Appl. Phys. Lett., vol. 76(5), pp. 562-654, 2000.
[59]
Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, Z. L. Wang, J. Phys. Chem. B., vol. 105(13), pp. 2507-2514, 2001.
[60]
A. M. Morales, C. M. Lieber, Science, , vol 279(5348), pp. 208-211, 1998.
[61]
S. Ge, K. Jiang, X. Lu, Y. Chen, R. Wang, S. Fan, Adv. Mater., vol. 17(1), pp. 56-61, 2005.
[62]
X.-Y. Zhang, L.-D. Zhang, G.-W. Meng, G.-H. Li, N.-Y. Jin-Phillipp, F. Phillipp, Adv. Mater., vol. 13(16), pp. 1238-1241, 2001.
[63]
G. V. Kuzentsov, V. A. Skryshevsky, T. A. Vdovenkova, A. I. Tsyganova, P. Gorostiza, F. G. Sanz, J. Electrochem. Soc., vol. 148,p. C528, 2001.
[64]
P. Gorostiza, R. Diaz, J. Servat, F. Sanz, J. R. Morante; J. Electrochem. Soc., vol. 144(3), pp. 909-914, 1997.
[65]
P. Gorostiza, M. A. Kulandainathan, R. Diaz, F. Sanz, P. Allongue, J. R. Morante; J. Electrochem. Soc., vol. 147(3), pp. 1026-1030, 2000.
[66]
K. Peng, Y. J. Yan, S. P. Gao, J. Zhu, Adv. Mater. vol. 14, p. 1164, 2002.
[67]
K. Peng, Y. J. Yan, S. P. Gao, J. Zhu, Adv. Funct. Mater. vol. 13, p.127 , 2003.
[68]
K. Peng, J. Zhu, Journal of Electroanalytical Chemistry, vol. 558, p. 35, 2003.
[69]
K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, SMALL, vol. 1, p. 1062, 2005.
[70]
K. Peng, J. J. Hu, Y. J. Yan, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. Zhu, Adv. Funct. Mater. vol. 16, p. 387. 2006.
[71]
T. Qiu, X. L. Wu, X. Yang, G. S. Huang, Z. Y. Zhang, Appl. Phys. Lett. Vol. 84, p. 3867, 2004.
[72]
T. Qiu, X. L. Wu, Y. F. Mei, G. J. Wan, P. K. Chu, G. G. Siu, Journal of crystal growth, vol. 377, p. 143, 2005.
[73]
T. Takagahara et al, Physical Review B, vol. 46, p. 15578, 1992.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top