(3.235.11.178) 您好!臺灣時間:2021/02/26 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林俊谷
研究生(外文):Jun-ku Lin
論文名稱:藉由陽極氧化鋁模板電鍍製備金屬奈米線及其場發射特性量測分析
論文名稱(外文):Fabrication and Characterization of Metal Nanowires in Anodic Aluminum Oxide Template by Electrodeposition
指導教授:王水進
指導教授(外文):Shui-Jinn Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:73
中文關鍵詞:鎳奈米線陽極氧化鋁模板
外文關鍵詞:Ni nanowiresAAOT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用陽極氧化鋁薄膜(Anodic Aluminum Oxide Template,AAOT) 具高密度且均勻孔洞之特性以電鍍法(electrodeposition) 將鎳金屬原子沉積在100 nm 與200 nm 直徑的AAOT 孔洞內,研究在不同長度與不同孔徑下所得奈米線之場發射特性,並找出最適長度。實驗結果顯示隨著奈米線長度逐漸增長,其啟動電場呈現先降低再提高之現象,此現象應可歸究於奈米線增長至一定長度時衍生較大之電場屏障效應使然。於利用100 nm 孔徑AAOT 電鍍1.5小時之條件下,所得鎳奈米線長度為8.5 um,其啟動電場與beta值分別為3.46 V/um @ J=10 uA/cm2與16248;而利用200 nm 孔徑AAOT 電鍍1小時之條件下,所得鎳奈米線長度則為7 um,其啟動電場與beta值則分別為4.82 V/um @ J=10 uA/cm2與5001。
本研究為改善電場屏障效應的影響,另利用黃光微影製作900 um與300 um 區塊於100 nm 孔徑的AAOT,製備選擇性成長之區塊奈米線矩陣,有效隔離各別區塊場發射源的間距改善其電場屏障效應。在利用900 um 區塊電鍍1小時之條件下,所得鎳奈米線長度為15 um,其啟動電場與beta值分別為2.91 V/um @ J=10 uA/cm2與7725;而利用300 um 區塊1小時之條件下,所得鎳奈米線長度為21 um,其啟動電場與�珥�則分別為1.83 V/um @ J=10 uA/cm2與10441。
在利用900 um 與300 um 區塊製備鎳奈米線區塊矩陣,在兩種區塊矩陣中鎳奈米線長度同為15 um 條件下,其啟動電場與beta值分別為2.91 V/um @ J=10 uA/cm2、7725與2.27 V/um @ J=10 uA/cm2 、 3784,由結果顯示在相同長度的鎳奈米線,其啟動電場在小面積300 um 區塊是優異於900 um 區塊。
此外為提升場發射特性,我們另外選擇功函數較低的金屬鋅(4.33 eV) 製備鋅奈米線,並與金屬鎳(5.15 eV) 奈米線相互比較其場發射特性之差異。實驗結果顯示,在同為100 nm 直徑且長度為2.5 �慆下的鎳與鋅奈米線,其鋅奈米線啟動電場為5.21 V/um @ J=10 uA/cm2是優於鎳奈米線8.71 V/um @ J=10 uA/cm2。
In this study, the electron field emission and structure characteristics of vertical-aligned Ni nanowires based on a pore-space confinement of nano porous anodic alumina oxide templates (AAOT) by using a simple electrochemical deposition method were reported. The nanopores of AAOT were about 100 nm and 200 nm. The electron field emission characteristics of the Ni nanowires within AAOT were measured and the turn-on field and the enhancement factor�nof Ni nanowires were about 3.46 V/um and 16248 for 100 nm AAOT and 4.82 V/um and 5001 for 200 nm AAOT, respectively.
Furthermore, in order to improve the field emission characteristics and decrease the electric field shielding effect of Ni nanowires, Ni nanowires were fabricated from 300×300 um2 and 900×900 um2 square pattern arrays for 100 nm AAOT. The turn-on field of patterned Ni nanowires were about 1.83 V/um for 300×300 um2 square pattern arrays and 2.91 V/um and for 900×900 um2 square pattern arrays, respectively. It is expected that vertical-aligned Ni nanowires would be a potential candidate in the applications of flat panel displays and field emission backlight devices.
中文摘要 i
英文摘要 iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1

1-1 前言 1

1-2 奈米碳管 1

1-3 鎳的特性 4
1-4 鋅的特性 4
1-5 場發射理論(field emission theory) 5

1-6 電場屏障效應(field-screening effect) 7

1-7 研究動機 10

第二章 陽極氧化鋁薄膜製備及實驗儀器介紹 11
2-1 陽極氧化鋁膜製備介紹 11

2-2 實驗設備 15
第三章 以陽極氧化鋁薄膜製備金屬鎳奈米線 18
3-1 前言 18

3-2 實驗流程 18

3-3 SEM分析 22

3-4 EDS分析 26

3-5 XRD 分析 27
3-6 場發射特性量測及分析 28
3-7 本章結論 35
第四章 以陽極氧化鋁薄膜製備選擇性區塊成長金屬鎳奈米線 36

4-1 前言 36

4-2 實驗流程 36

4-3 SEM分析 40

4-4 場發射特性量測及分析 45
4-5 本章結論 53

第五章 以陽極氧化鋁薄膜製備金屬鋅奈米線 54
5-1 前言 54

5-2 實驗流程 54

5-3 SEM分析 58

5-4 EDS分析 58

5-5 XRD 分析 59
5-6 場發射特性量測及分析 59
5-7 本章結論 63
第六章 結論及未來展望 64
6-1 結論 64

6-2 未來展望 65
參考文獻 66
附錄 71
作者簡歷 73
[1]Meyer, et al., “Recent Development On Microtips` Display At LETI”,Technical Digest of IVMC, vol. 91, p. 6 ,1991.
[2] Iijima S. “Helical microtubules of graphitic carbon,” Nature, pp. 354~356, 1991.
[3]H.Takikawa, O. Kusano, and T. Sakakibara, “Graphite cathod spot produces carbon nanotube in arc discharge”, J. Phy. D: Appl. Phys, vol. 32, p. 2433, 1999.
[4]A. A. Puretzky, D. B. Geohegan, X. Fan, and S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization”, Appl. Phys. Lett, vol. 76, p. 182, 2000.
[5]G. Che, B. B. Lakshmi, C. R. Martin, and E. R. Fisher, “Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method”, Chem. Mater, vol 10, p. 206 1998.
[6] S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih, “Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis”, Appl. Phys. Lett, vol. 74, p. 3462, 1999.
[7] Jourent, C. Maser, W.K. Bernier, P. Loiseau, A. de la Chapelle, M. L. Lefrant, S. Deniard, P.Lee, R. Fischer, J.E. Natur., vol. 388, p. 756, 1997.
[8] R. H. Fowler, and L. W. Nordheim, “Electron emission in intense electric felds”, Proc. R. Soc. London Ser. A, vol. 119, p. 173, 1928.
[9] C. Journet﹐P. Bernier﹐“Production of carbon nanotubes”, Appl. Phys. A, vol. 67﹐p. 1, 1998.
[10]D. Al Mawlawi, N. Coombs, and M. Moskovits, “Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size”, J. Appl. Phys, vol. 70, p. 4421, 1991.
[11]F. Li, R. M. Metzger, and W. D. Doyle, “Influence of particle size on the magnetic viscosity and activation volume of α-Fe nanowires in alumite films”, IEEE Trans. Magn, vol. 33, p. 3715, 1997.
[12]S. Manalis, K. Babcock, J. Massie, V. Elings, and M. Dugas, “Submicron studies of recording media using thin-film magnetic scanning probes”, Appl. Phys. Lett, vol. 66, p. 2585, 1995.
[13]S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fisher, “Single- domain magnetic pillar array of 35 nm diameter and 65 Gbits/in2 density for ultrahigh density quantum magnetic storage”, J. Appl. Phy, vol. 76, p. 6673, 1994.
[14] C. X. Xu and X. W. Sun,“Strategies to Improve Field Emission Performance of Nanostructural ZnO” Journal of Electronic Malteials, vol. 36, p. 5, 2007.
[15] Y. Chen, S. Patel, Y. Ye, D. T. Shaw, and L. Guo, “Field emission from aligned high-density graphitic nanofibers”, Appl. Phys. Let, vol. 73, p. 2119, 1998.
[16] W. A. de Heer, A. Chatelain, and D. Ugrate, “A Carbon Nanotube Field-Emission Electron Source”, Science, vol. 270, p. 1179, 1995.
[17] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields”, Appl. Phys. Lett., vol. 70, p. 3308, 1997.
[18] P. G. Collins, and A. Zettl, “Unique characteristics of cold cathode carbon-nanotube-matrix field emitters”, Phys. Rev. B, vol. 55, p. 9391, 1997.
[19] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yua, “Morphological effects on the field emission of ZnO nanorod arrays”, Appl. Phys. Lett., vol. 86, p. 203115, 2005.
[20] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett., vol. 76, p. 2071, 2000.
[21]J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, “Study of the field-screening effect of highly ordered carbon nanotube arrays”, Appl. Phys. Lett., vol. 80, p. 2392, 2002.
[22]K. Fukutani, K. Tanji, T. Motoi, and T. Den, “Ultrahigh Pore Density Nanoporous Films Produced by the Phase Separation of Eutectic Al-Si for Template-Assisted Growth of Nanowire Array”, Adv. Mate., vol. 16, p. 1456, 2004.
[23]K. Nielsch, F. Müller, A.-P. Li, and U. Gösele, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition”, Adv. Mate., vol. 12, p. 582, 2000.
[24] Y. Li, D. Xu, Q. Zhang, D. Chen, F. Huang, Y. Xu, G. Guo, and Z. Gu, “Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates”, Chem. Matter., vol. 11, p. 3433, 1999.
[25]D. Routkevitch, T. Bigioni, M. Moskovits, and J. M. Xu, “Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates”, J. Phys. Chem. vol. 100, p. 14037, 1996.
[26] C. J. Yang, S. M. Wang, S. W. Liang, Y. H. Chang, C. Chen, and J. M. Shieh, “Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition”, Appl. Phys. Lett., vol. 90, p. 033104, 2007.
[27] G. Meng, A. Cao, J. Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima, and P. M. Ajayan, “Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template”, J. Appl. Phys. vol. 97, p. 064303, 2007.
[28] J. Y. Miao, Y. Cai, Y. F. Chan, P. Sheng, and N. Wang, “A Novel Carbon Nanotube Structure Formed in Ultra-Long Nanochannels of Anodic Aluminum Oxide Templates”, J. Phys. Chem. B, vol. 110, p. 2080, 2006.
[29] J. S. Lee, G. H. Gu, H. Kim, K. S. Jeong, J. Bae, and J. S. Suh, “Growth of Carbon Nanotubes on Anodic Aluminum Oxide Templates:Fabrication of a Tube-in-Tube and Linearly Joined Tube”,
Chem. Mater., vol. 13, p. 2387, 2001.
[30]G. E. Thompson, “Porous anodic alumina: fabrication characterization and applications”, Thin Solid Film, vol. 297, p.192, 1997.
[31]C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces”, Appl. Phys. Lett., vol. 78, p. 120, 2001.
[32]J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp”, J. Vac. Sci. Technol. B, vol. 21, p. 2, 2003.
[33]Z. Sun, and H. K. Kim, “Comparison of isotropic and anisotropic sensor effects in polymer lightguides”, Appl. Phys. Lett., vol. 81, p. 18, 2002.
[34] A. Subramania, A. R. S. Priya and V. S. Muralidharan, “Electrocatalytic Behaviour of Nickel-Cerium Alloy Deposits”, Portugaliae Electrochimica Acta., vol. 25, pp. 481~ 488, 2007.
[35] I. PASEKA” EVOLUTION OF HYDROGEN AND ITS SORPTION ON REMARKABLE ACTIVE AMORPHOUS SMOOTH Ni-P(x)”, Electrochimica Acta., vol. 40, pp. 1633~ 1640, 1995.
[36] C. P. Juan, K. J Chen, C. C Tsai , “Improved Field-Emission Properties of Carbon Nanotube Field-Emission Arrays by Controlled Density Growth of Carbon Nanotubes”, Japanese Journal of Applied Physics., vol. 44, p. 365, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔