(100.26.179.251) 您好!臺灣時間:2021/04/15 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許宣弘
研究生(外文):Shiuan-Hung Hsu
論文名稱:半人型機器人機械手臂運動控制系統之設計與實現
論文名稱(外文):Design and Implementation of Motion Control System for Semi-Humanoid Robot Arm
指導教授:李祖聖
指導教授(外文):Tzuu-Hseng S. Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:79
中文關鍵詞:機械手臂軌跡追蹤模糊邏輯控制器
外文關鍵詞:trajectory controlFLCRobot arm
相關次數:
  • 被引用被引用:6
  • 點閱點閱:561
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:221
  • 收藏至我的研究室書目清單書目收藏:0
本論文係探討半人型機器人之機械手臂運動控制。首先描述機器人硬體架構與六個自由度的機械手臂之機構設計,其致動器為裝備有光學編碼器的直流馬達,藉由此編碼器可計算出直流馬達的轉動角度。經由核心處理器NIOS,整合馬達的回授訊號以及機器人的感知系統資訊,並運算機械手臂軌跡控制演算法,實現機械手臂軌跡追蹤控制的目標。利用逆運動學之幾何法推得機械手臂的運動模型,經由已知的手臂姿態與位置,解出各個關節應轉動的角度。本論文提出模糊軌跡控制演算法,首先將空間中的位置誤差以逆運動學轉換成馬達的角度位置,對回授訊號做控制補償,再由模糊邏輯控制器產生命令,以達成機械手臂軌跡追蹤行為。最後,由實驗結果來驗證所設計之機械手臂軌跡追蹤控制系統的效益及適用性。
This thesis mainly explores the motion control of a semi-humanoid robot arm. First, the hardware architecture and the mechanism of the 6-DOF (degree of freedom) semi-humanoid robot arm are described. The actuator of a robot arm is the six DC motors equipped with an optical encoder, and depending on the encoder, the angle of the rotation can be calculated to integrate the information of the encoders with a perception sensor system. The SOPC system is established to process the trajectory control algorithm. Second, given the position and posture, the joint angles of the rotary joints can be obtained by the geometrical inverse kinematics analysis. And then a fuzzy trajectory control algorithm, which consists of a trajectory tracking system and a fuzzy logic controller
(FLC), is proposed. Through the kinematical model, the angle in the robot coordinate frame can be turned into the absolute position in the world coordinate frame, and the errors of the position based on the kinematical model can be corrected. Based on the command generated from the fuzzy controller, the robot arm can achieve the goal. Finally, the experiment demonstrates the efficiency and feasibility of the proposed system.
Contents

Abstract Ⅰ
Acknowledgement Ⅲ
Contents Ⅳ
List of Figures Ⅵ
List of Tables Ⅹ

Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 3
Chapter 2. Overview of the Semi-Humanoid Robot 4
2.1 Introduction 4
2.2 Overview of the Semi-Humanoid Robot 5
2.3 System Architecture of the Semi-Humanoid
Robot 7
2.4 Hardware Architecture of the Semi-Humanoid
Robot 9
2.4.1 Central Processor Units: NIOS + NB 9
2.4.2 Power System and Driver Circuit
Board 14
2.4.3 DC Motor and Encoder Module 16
2.4.4 Stereo Vision and Speech Guidance
Module 17
2.4.5 Sensor Module 18
2.4.6 Hardware Configuration of the Semi-
Humanoid Robot 20
2.5 Summary 23
Chapter 3. Design of the Trajectory Control 24
3.1 Introduction 24
3.2 Kinematic Model of the Semi-Humanoid Robot
Arm 27
3.3 Inverse Kinematic Model of the Semi-Humanoid
Robot Arm 31
3.4 Design Procedure of Using NIOS 39
3.4.1 Feedback Control System 39
3.4.2 The Trajectory Control Algorithm 42
3.4.3 The NIOS II Interface 47
3.5 Summary 50
Chapter 4. A Fuzzy Controller Design for the Semi-Humanoid
Robot 51
4.1 Introduction 51
4.2 A Fuzzy Trajectory Tracking System 52
4.3 Position Controller - FLC 54
4.3.1 Fuzzification Interface 55
4.3.2 Decision Making Logic (DML) 56
4.3.3 Knowledge Base (KB) 57
4.3.4 Defuzzification Interface 59
4.4 Selection of FLC Membership 60
4.5 Summary 62
Chapter 5. Experimental Results 63
5.1 Introduction 63
5.2 The Operation Interface of the Semi-Humanoid
Robot 64
5.3 Experimental Results of the Trajectory
Control Algorithm 65
Chapter 6. Conclusion and Future Work 73
6.1 Conclusion 73
6.2 Future Work 74
References 75
Biography 79
References
[1] G. A. Bekey, Autonomous robots: from biological inspiration to implementation and control, MIT Press, 2005.
[2] J. M. Valin, Y. Shun'ichi, J. Rouat, F. Michaud, K. Nakadai and G. O. Hiroshi, "Robust recognition of simultaneous speech by a mobile robot," IEEE Trans. on Robotics, Vol. 23, No. 4, pp. 1552-3098, 2007.
[3] T. Xiao, M. Li, Q. Huang, W. Zhang and L. He, "Analysis of pushing manipulation by humanoid robot BHR-2 during dynamic walking," in Proc. the IEEE International Conf. on Automation and Logistics, pp. 3000-3005, China, 2007.
[4] D. H. Song and S. Jung, "Geometrical analysis of inverse kinematics solutions and fuzzy control of humanoid robot arm under kinematics constraints," in Proc. the IEEE International Conf. on Mechatronics and Automation, pp. 1178-1183, China, 2007.
[5] H. Ishiguro, T. Ono, M. Imai and T. Kanda, "Development and evaluation of an interactive humanoid robot-Robovie," in Proc. ICRA IEEE International Conf. on Robotics and Automation, Vol. 2, pp. 1848-1855, Washington DC, 2002.
[6] H. Kobayashi and M. Yanagida, "Moving object detection by an autonomous guard robot," in Proc. the 4th IEEE Int. Workshop on Robot and Human Communication, pp. 323-326, Tokyo, 1995.
[7] Y. Shimosasa, J. Kanemoto, K. Hakamada, H. Horii, T. Ariki, Y. Sugawara, F. Kojio, A. Kimura and S. Yuta, "Security service system using autonomous mobile robot," in Proc. the IEEE SMC '99 Conf. on Systems, Man, and Cybernetics, Vol. 4, pp. 825-829, 1999.
[8] K. S. Fu, R. C. Gonzalez and C. S. G. Lee, Robotics: control, sensing, vision, and intelligence, McGraw-Hill, 1987.
[9] M. Xie, Fundamentals of robotics: linking perception to action, World Scientific, 2003.
[10] L. W. Tsai, Robot analysis: the mechanics of serial and parallel manipulators, John Wiley & Sons, 1999.
[11] M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot modeling and control, John Wiley & Sons, 2006.
[12] K. Okada, M. Kojima, Y. Sagawa, T. Ichino, K. Sato and M. Inaba, "Vision based behavior verification system of humanoid robot for daily environment tasks," in Proc. the 2006 IEEE Int. Conf. on Humanoid Robots, pp. 7-12, 2006.
[13] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi and T. Isozumi, "Humanoid robot HRP-2," in Proc. the 2004 IEEE Int. Conf. on Robotics & Automation, pp. 1083-1090, LA, 2004.
[14] M. Hasanuzzaman, T. Zhang, V. Ampornaramveth, H. Gotoda, Y. Shirai and H. Ueno, "Knowledge-based person-centric human-robot interaction using facial and hand gestures," in Proc. the 2004 IEEE Int. Conf. on Systems, Man, and Cybernetics, Vol. 3, pp. 2121-2127, 2004.
[15] J. Nakanishi, R. Cory, M. Mistry, J. Peters and S. Schaal, "Comparative experiments on task space control with redundancy resolution," in Proc. the 2005 IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 3901-3908, 2005.
[16] S. U. Ryu, C. J. Kim and K. H. Coi, "Multi-arm path generation method for humanoid robots," in Proc. the 2007 IEEE Int. Conf. on Robot & Human Interactive Communication, pp. 224-227, Ro-Man, 2007.
[17] H. Martinez-Alfaro and S. Gomez-Garcia, "Mobile robot path planning and tracking using simulated annealing and fuzzy logic control," Expert on Systems with Applications, Vol. 15, No.3, pp. 421-429, 1998.
[18] A. Edsinger and C. C. Kemp, "Manipulation in human environments," in Proc. the 2006 6th IEEE-RAS Int. Conf. on Humanoid Robots, pp. 102-109, 2006.
[19] P. Nanua, K. J. Waldron and V. Murthy, "Direct kinematic solution of a stewart platform," IEEE Trans. on Robotics Automation, Vol. 6, No. 4, pp. 438-444, 1990.
[20] R. Ricard and C. Gosselin, "On the development of hybrid planar manipulators," in Proc. the 1993 IEEE Int. Conf. on Circuits and Systems, Vol. 1, pp. 398-401, 1993.
[21] K. Erbatur, O. Kaynak and I. Rudas, "Fuzzy identifier based inverse dynamics control for a 3-DOF articulated manipulator," in Proc. the 1997 IEEE Int. Conf. on Industrial Electronics, Control, and Instrumentation, Vol. 3, pp. 1052-1056, 1997.
[22] Robotics Research Corporation, http://www.robotics-research.com/.
[23] Beijing Research Institute of Automation for Machinery Industry, http://www.robotschina.com/robotcenter/wuliu/enwuliu.htm.
[24] Altera Corporation, http://www.altera.com/.
[25] Faulhaber Group, http://www.faulhaber-group.com/.
[26] Robot L. Norton, Machine design: an integrated approach, Prentice-Hall, 1998.
[27] AMX, http://www.amx.com.tw/.
[28] J. Funda, R. H. Taylor, B. Eldridge, S. Gomory and K. G. Gruben, "Constrained cartesian motion control for teleoperated surgical robots," IEEE Trans. on Robotics and Automation, Vol. 12, No. 3, pp. 453-464, 1996.
[29] S. Calinon, J. Epiney and A. Billard, "A humanoid robot drawing human portraits," in Proc. the 2005 5th IEEE Int. Conf. on Humanoid Robots, pp. 161-166, 2005.
[30] L. Guilamo, J. Kuffner, K. Nishiwaki and S. Kagami, "Efficient prioritized inverse kinematic solutions for redundant manipulators," in Proc. the 2005 IEEE Int. Conf. on Intelligent Robot and Systems, pp. 3921-3926, 2005.
[31] M. Tarokh, "Decoupled nonlinear three-term controllers for robot trajectory tracking," IEEE Trans. on Robotics and Automation, Vol. 15, No. 2, pp. 453-464, 1999.
[32] J. X. Xu and W. Wang, "Two optimization algorithm for solving robotics inverse kinematics with redundancy," in Proc. the 2007 IEEE Int. Conf. on Control and Automation, pp. 3021-3028, China, 2007.
[33] R. P. Paul, Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators, MIT Press, 1981.
[34] Y. Yokokohji, T. Toyoshima and T. oshikawa, "Efficient computational algorithms for trajectory control of free-flying space robots with multiple arms," IEEE Trans. on Robotics and Automation, Vol. 9, No. 9, pp. 571-580, 1993.
[35] L. Behera, M. Gopal and S. Chaudhury, "On adaptive trajectory tracking of a robot manipulator using inversion of its neural emulator," IEEE Trans. on Neural Networks, Vol. 7, No. 6, pp. 1401-1414, 1996.
[36] A. Visioli and G. Legnani, "On the trajectory tracking control of industrial SCARA robot manipulators," IEEE Trans. on Industrial Electronics, Vol. 49, No. 1, pp. 224-232, 2002.
[37] M. Hamerlain, R. Ouiguini, Z. Siguerdidjane and S. Saadaoui, "Robust control applied to robot arm," in Proc. the 2005 IEEE Int. Conf. on Intelligent Control, pp. 149-154, Portugal, 1997.
[38] R. J. Wai and P. C. Chen, "Intelligent tracking control for robot manipulator including actuator dynamics via TSK-Type fuzzy neural network," IEEE Trans. on Fuzzy Systems, Vol. 12, No. 4, pp. 552-559, 2004.
[39] P. J. C. Branco and J. A. Dente, "On using fuzzy logic to integrate learning mechanisms in an electro-hydraulic system-part II: actuator's position control," IEEE Trans. on Systems, Man, and Cybernetics, Vol. 30, No. 3, pp. 317-328, 2000.
[40] R. J. Wai and M. C. Lee, "Intelligent optimal control of single-link flexible robot arm," IEEE Trans. on Industrial Electronics, Vol. 51, No. 1, pp. 201-220, 2004.
[41] L. A. Zadeh, "Fuzzy algorithm," Information Control, Vol. 12, pp. 94-102, 1968.
[42] L. A. Zadeh, "Fuzzy sets," Information Control, Vol. 8, pp. 338-353, 1965.
[43] L. A. Zadeh, "Outline of a new approach to the analysis of complex systems and decision processes," IEEE Trans. on Systems, Man and Cybernetics, Vol. 3, pp. 28-44, 1973.
[44] H. L. Hung, Omni-direction trajectory control for surveillance and security robot team, Master Thesis, Dept. of Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, R.O.C., 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔