跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃建銘
研究生(外文):Chien-Ming Huang
論文名稱:具定功率控制之新型複金屬燈電子式安定器
論文名稱(外文):Novel Electronic Ballasts with Constant Power Control for Metal Halide Lamps
指導教授:梁從主陳建富陳建富引用關係
指導教授(外文):Tsorng-Juu LiangJiann-Fuh Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:90
中文關鍵詞:定功率控制電子式安定器複金屬燈
外文關鍵詞:Metal halide lampElectronic ballastConstant power control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:457
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
複金屬燈屬於高照度氣體放電燈之一種,具高發光效率、良好演色性、壽命長與體積小等優點,是相當重要的照明燈源之一。本論文提出具定功率控制之新型複金屬燈電子式安定器,當燈管等效電阻變化時仍可將燈管功率控制在一定值,並以低頻方波電流驅動燈管避免音頻共振之現象。
具定功率控制之三級架構電子式安定器主要由昇壓型轉換器、降壓型轉換器與全橋型換流器所組成。控制燈管功率的降壓型轉換器操作於電流模式控制法並利用具準位位移電流偵測電路來達到定功率控制,量測結果顯示燈管功率的變化在±0.6%之內,且70W安定器整體效率在86.4%至89.5%之間。本論文亦提出一雙級高功因電子式安定器,前級是一單開關雙輸出整合型轉換器,後級為一低頻操作的半橋型換流器。輸入功因修正與燈管定功率控制之功能可由單開關雙輸出整合型轉換器來達成,實驗結果顯示輸入電流諧波失真可符合IEC 61000-3-2 Class C之規範,且燈管功率之變化在±1.1%之內,70W安定器整體效率則在85.5%至86.1%之間。
在多燈管應用方面,本論文提出兩個多燈管電路架構。第一個是三級架構多燈管電子式安定器,主電路架構包含昇壓型轉換器、返馳型轉換器與半橋型換流器。每一燈管功率均由相對應的返馳型轉換器獨立控制,量測結果顯示此安定器可驅動四支20W燈管且整體效率為85%至86.5%之間。另一雙級雙燈管電子式安定器主架構包含昇壓型轉換器與三臂換流器。具錯相式控制之三臂換流器同時兼具燈管定功率控制與燈管低頻驅動之功能,實驗結果顯示可驅動兩支35W燈管之安定器整體效率在85.7%至89.7%之間。
The metal-halide (MH) lamp is one kind of high-intensity-discharge (HID) lamp. The MH lamp provides high performance in terms of luminous efficacy, color rendering, long life, and compact size. Thus, the MH lamp has become a popular lighting source. In this dissertation, novel electronic ballasts with constant power control for MH lamps are proposed. The MH lamp is driven by low-frequency square-waveform current to avoid the phenomenon of acoustic resonance. Also, the lamp power is controlled at a constant level, even if the equivalent resistance of the MH lamp is changed.
The three-stage electronic ballast with constant power control is constructed of a boost converter, a buck converter, and a full-bridge inverter. The buck converter is a lamp power control stage, which is operated at the proposed current mode control with a level-shifted current-sensing signal to achieve constant output power control. The measured results show that the variation of the lamp power is within ± 0.6 %. The overall efficiency of the 70W three-stage electronic ballast is between 86.4 % and 89.5 %. In addition, a two-stage, high power factor electronic ballast is presented in this dissertation. The front stage is a single-switch two-output integrated converter. The post stage is a low-frequency half-bridge inverter. The functions of power factor correction and lamp power control are achieved by the single-switch two-output integrated converter. The measured results illustrate that the harmonic distortion of the input current satisfy the requirements of the IEC 61000-3-2 Class C standard. The variation in lamp power is within ± 1.1 %, and the overall efficiency of the 70W two-stage electronic ballast is between 85.5 % and 86.1 %.
For multi-lamp applications, two circuit topologies are proposed in this dissertation. The proposed three-stage multi-lamp electronic ballast is composed of a boost converter, flyback converters, and a half-bridge inverter. Each lamp’s power is independently controlled with constant power by the corresponding flyback converter. The measured results show that the overall efficiency of the 20W four-lamp electronic ballast is between 85 % and 86.5 %. The proposed two-stage two-lamp electronic ballast includes a boost converter and a three-leg inverter. The functions of constant lamp power control and low-frequency lamp driving are achieved by the interleaving controlled three-leg inverter. The measured results depict that the overall efficiency of the 35W two-lamp electronic ballast is between 85.7 % and 89.7 %.
LIST OF CONTENTS……………………………………………………………………I
LIST OF FIGURES………………………………………………………………………III
LIST OF TABLES………………………………………………………………………VI
CHAPTER 1 INTRODUCTION………………………………………………………1
1.1 Background…………………………………………………………………………1
1.2 Motivation…………………………………………………………………………1
1.3 Dissertation Outline…………………………………………………………………5
CHAPTER 2 THREE-STAGE ELECTRONIC BALLAST WITH CONSTANT
POWER CONTROL……………………………………………………7
2.1 Introduction…………………………………………………………………………7
2.2 Operating Principle of Three-Stage Electronic Ballast……………………………7
2.3 Analysis of Buck Converter…………………………………………………………9
2.4 Analysis of The Proposed Constant Power Control Method………………………14
2.5 Control Circuit of Three-Stage Electronic Ballast…………………………………18
2.6 Design Example and Experimental Results………………………………………21
2.7 Summary…………………………………………………………………………27
CHAPTER 3 TWO-STAGE HIGH POWER FACTOR ELECTRONIC
BALLAST………………………………………………………………28
3.1 Introduction………………………………………………………………………28
3.2 Operating Principle of The Proposed Two-Stage Electronic Ballast………………28
3.3 Analysis of Single-Switch Two-Output Integrated Converter……………………32
3.4 Control Circuit of The Proposed Two-Stage Electronic Ballast……………………37
3.5 Design Example and Experimental Results………………………………………39
3.6 Summary…………………………………………………………………………45
CHAPTER 4 THREE-STAGE MULTI-LAMP ELECTRONIC BALLAST………46
4.1 Introduction………………………………………………………………………46
4.2 Operating Principle of The Proposed Multi-Lamp Electronic Ballast……………46
4.3 Analysis of Flyback Converter……………………………………………………48
4.4 Control Circuit of The Proposed Multi-Lamp Electronic Ballast…………………53
4.5 Design Example and Experimental Results………………………………………54
4.6 Summary…………………………………………………………………………58
CHAPTER 5 TWO-STAGE TWO-LAMP ELECTRONIC BALLAST……………59
5.1 Introduction………………………………………………………………………59
5.2 Operating Principle of Interleaving Controlled Three-Leg Inverter………………59
5.3 Control Circuit of Interleaving Controlled Three-Leg Inverter……………………69
5.4 Design Example and Experimental Results………………………………………73
5.5 Summary…………………………………………………………………………79
CHAPTER 6 CONCLUSIONS………………………………………………………80
REFERENCES…………………………………………………………………………82
VITA………………………………………………………………………………………89
LIST OF PUBLICATIONS……………………………………………………………90
[1]J. F. Waymouth, “Metal halide lamps,” Proceedings of the IEEE, vol.59, no.4, pp. 629-633, Apr. 1971.
[2]M. Sugiura, “Review of metal-halide discharge-lamp development 1980-1992,” IEE Proceedings-A, Measurement and Technology, vol. 140, no. 6, pp. 443-449, Nov. 1993.
[3]W. Yan, Y. K. E. Ho, and S. Y. R. Hui, “Stability study and control methods for small-wattage high-intensity-discharge (HID) lamps,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1522-1530, Sep./Oct. 2001.
[4]M. A. Co, C. Z. Rezende, D. S. L. Simonetti, and J. L. F. Vieira, “Microcontrolled electronic gear for HID lamps comparisons with electromagnetic ballast,” Proc. IEEE IECON, 2002, vol. 1, pp. 468-472.
[5]W. Mark, “A study of the high intensity discharge lamp - electronic ballast interface,” Proc. IEEE IAS, 2003, vol. 2, pp.1043-1048.
[6]J. M. Davenport and R. J. Petti, “Acoustic resonance phenomena in low wattage metal halide lamps,” Journal of Illuminating Engineering Society, vol. 12, no. 4, pp. 633-642, Apr. 1985.
[7]H. L. Witting, “Acoustic resonances in cylindrical high-pressure arc discharges,” Journal of Applied Physics, vol. 49, no. 5, pp. 2680-2683, 1978.
[8]R. Schafer and H. P. Stormberg, “Investigations on the fundamental longitudinal acoustic resonance of high pressure discharge lamps,” Journal of Applied Physics, vol. 53, no. 5, pp. 3476-3480, 1982.
[9]H. J. Faehnrich and E. Rasch, “Electronic ballast for metal halide lamps,” Journal of Illuminating Engineering Society, pp. 131-140, Summer 1988.
[10]C. S. Moo, C. R. Lee, and H. C. Yen, “A high-power-factor constant-frequency electronic ballast for metal halide lamps,” Proc. IEEE PESC, 1998, vol. 2, pp. 1755-1760.
[11]R. Redl and J. D. Paul, “A new high-frequency and high-efficiency electronic ballast for HID lamps: Topology, analysis, design and experimental results,” Proc. IEEE APEC, 1999, vol. 1, pp. 486-492.
[12]C. A. Cheng, T. J. Liang, C. M. Chuang, and J. F. Chen, “A high power factor electronic ballast of projector lamps with variable frequency control,” Proc. IEEE PESC, 2002, vol. 1, pp. 213-217.
[13]F. J. F. Martín, C. B. Viejo, J. C. A. Antón, M. A. P. García, M. Rico-Secades, and J. M. Alonso, “Analysis and design of a high power factor, single-stage electronic ballast for high-intensity discharge lamps,” IEEE Tran. Power Electron., vol. 18, no. 2, pp. 558-569, Mar. 2003.
[14]J. Y. Park and D. Y. Jung, “Electronic ballast with constant power output controller for 250 W MHD lamp,” Proc. IEEE ISIE, 2001, vol. 1, pp. 46-51.
[15]C. Branas, F. J. Azcondo, and S. Bracho, “Design of LCpCs resonant inverters as a power source for HID lamp ballast applications,” IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1584-1593, Nov./Dec. 2005.
[16]M. Gulko and S. Ben-Yaakov, “A MHz electronic ballast for automotive-type HID lamps,” Proc. IEEE PESC, 1997, vol. 1, pp. 39-45.
[17]M. H. Ohsato, Q. Mao, H. Ohguchi, T. Shimizu, G. Kimura, and H. Takagi, “Megahertz operation of voltage-fed inverter for HID lamps using distributed constant line,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 747-751, Jul./Aug. 1998.
[18]Y. Jiang, M. Chen, and Z. Qian, “A novel MHz electronic ballast with three order LPF,” Proc. IEEE IAS, 2005, vol. 2, pp. 1167-1170.
[19]R. L. Lin and Z. Q. Wang, “2.65-MHz self-oscillating electronic ballast with constant-lamp-current control for metal halide lamp,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 839-844, May 2007.
[20]L. Laskai, P. N. Enjeti, and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. Appl., vol.34, no. 3, pp. 597-605, May/Jun. 1998.
[21]T. J. Liang, C. A. Cheng, J. F. Chen, and R. L. Lin, “Single-stage high-power-factor electronic ballast with complex frequency modulation for HID lamps,” IET Electr. Power Appl., vol. 1, no. 3, pp. 377-386, May 2007.
[22]S. Ben-Yaakov, M. Gulko, and A. Giter, “The simplest electronic ballast for HID lamps,” Proc. IEEE APEC, 1996, vol. 2, pp. 634-640.
[23]D. J. Oh, K. M. Cho, and H. J. Kim, “Development of a digital controller using a novel complex modulation method for the metal halide lamp ballast,” IEEE Tran. Power Electron., vol. 18, no. 1, pp. 390-400, Jan. 2003.
[24]J. Wang, D. Xu, and H. Yang, “Low-frequency sine wave modulation of 250W high-frequency metal halide lamp ballasts,” Proc. IEEE APEC, 2004, vol. 2, pp. 1003-1007.
[25]J. M. Alonso, J. Ribas, M. Rico-Secades, J. Garcia, J. Cardesin, and M. A. D. Costa, “Evaluation of high-frequency sinusoidal waveform superposed with third harmonic for stable operation of metal halide lamps,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 721-727, May/Jun. 2005.
[26]L. M. F. Morais, P. F. Donoso-Garcia, S. I. Seleme, Jr., and P. C. Cortizo, “Acoustic resonance avoidance in high pressure sodium lamps via third harmonic injection in a PWM inverter-based electronic ballast,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 912-918, May 2007.
[27]M. Ponce, A. Lopez, J. Correa, J. Arau, and J. M. Alonso, “Electronic ballast for HID lamps with high frequency square waveform to avoid acoustic resonances,” Proc. IEEE APEC, 2001, vol. 2, pp. 658-663.
[28]E. L. Corominas, M. Rico-Secades, J. Garcia-Garcia, J. M. Alonso, A. J. Calleja, J. Ribas, and J. Cardesin, “A novel low cost electronic ballast for 250 W high pressure mercury vapor lamp based on a current-mode-controlled buck-boost inverter,” Proc. IEEE APEC, 2001, vol. 2, pp. 676-682.
[29]C. R. Lee, K. H. Chen, and C. S. Moo, “Operating characteristics of small-wattage metal halide lamps with square wave current from 50 Hz to 50 kHz,” Proc. IEEE IAS , 2003, vol. 2, pp.1030-1035.
[30]M. Rico-Secades, E. L. Corominas, J. M. Alonso, J. Ribas, J. Cardesin, A. J. Calleja, and J. Garcia-Garcia, “Complete low-cost two-stage electronic ballast for 70-W high-pressure sodium vapor lamp based on current-mode-controlled buck-boost inverter,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 728-734, May/Jun. 2005.
[31]J. Garcia-Garcia, J. Cardesin, J. Ribas, A. J. Calleja, E. L. Corominas, M. Rico-Secades, and J. M. Alonso, “New control strategy in square-wave inverters for low wattage metal halide lamps supply to avoid acoustic resonances,” Proc. IEEE APEC, 2004, vol. 2, pp. 984-990.
[32]J. Garcia-Garcia, J. Cardesin, J. Ribas, A. Calleja, E. L. Corominas, J. M. Alonso, and M. Rico-Secades, “Nonresonant, quasi-square wave, high-frequency inverter for HID lamps operation from a DC bus,” Proc. IEEE IAS, 2003, vol. 1, pp.332-338.
[33]J. Garcia, J. Cardesin, M. Alonso, J. Ribas, and A. Calleja, “New HF square-waveform ballast for low wattage metal halide lamps free of acoustic resonances,” Proc. IEEE IAS, 2004, vol. 1, pp.655-662.
[34]H. Li, M. Shen, Y. Jiang, and Z. Qian, “A novel low-frequency electronic ballast for HID lamps,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1401-1408, Sep./Oct. 2005.
[35]J. Melis, “A power controlled current source, circuit and analysis,” Proc. IEEE APEC, 1994, vol. 2, pp. 856-861.
[36]J. Melis and O. Vila-Masot, “Low frequency square wave electronic ballast for gas discharge lamps,” U. S. Patent 5 428 268, June 27, 1995.
[37]T. J. Liang, C. A. Cheng, and W. S. Lai, “A novel two-stage high-power-factor low-frequency HID electronic ballast,” Proc. IEEE IECON, 2003, vol. 3, pp. 2607-2612.
[38]M. Shen, Z. Qian, and F. Z. Peng, “A novel two-stage acoustic resonance free electronic ballast for HID lamps,” Proc. IEEE IAS, 2002, vol. 3, pp. 1869-1874.
[39]A. Reatti, “Low-cost high power-density electronic ballast for automotive HID lamp,” IEEE Tran. Power Electron., vol. 15, no. 2, pp. 361-368, Mar. 2000.
[40]M. A. D. Costa, J. M. Alonso, J. Garcia, and J. Cardesin, “Low-cost electronic ballast to supply MH lamps based on flyback converter,” IET Electron. Lett., vol. 41, no. 10, pp. 615-616, May 2005.
[41]K. C. Lee and B. H. Cho, “Design and analysis of automotive high intensity discharge lamp ballast using micro controller unit,” IEEE Tran. Power Electron., vol. 18, no. 6, pp. 1356-1354, Nov. 2003.
[42]H. Nishimura, H. Nagase, K. Uchihashi, T. Shiomi, and M. Fukuhara, “A new electronic ballast for HID lamps,” Journal of Illuminating Engineering Society, pp. 70-76, Summer 1988.
[43]M. Shen, Z. Qian, and F. Z. Peng, “Design of a two-stage low-frequency square-wave electronic ballast for HID lamps,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 424-430, Mar./Apr. 2003.
[44]J. Zhou, F. Tao, F. C. Lee, N. Onishi, and M. Okawa, “High power density electronic ballast for HID lamp,” Proc. IEEE IAS, 2002, vol. 3, pp. 1875-1880.
[45]J. Zhao, M. Shen, M. Chen, and Z. Qian, “A novel low-frequency square wave electronic ballast for low-wattage HID lamps,” Proc. IEEE IAS, 2003, vol. 1, pp. 321-324.
[46]M. A. D. Costa, J. M. Alonso, J. Garcia, J. Cardesin, and M. Rico-Secades, “Acoustic resonance characterization of low-wattage metal-halide lamps under low-frequency square-waveform operation,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 735-743, May 2007.
[47]J. Garcia-Garcia, J. Cardesin, J. Ribas, A. J. Calleja, E. L. Corominas, M. Rico-Secades, and J. M. Alonso, “New control strategy in square-wave inverters for low wattage metal halide lamps supply to avoid acoustic resonances,” Proc. IEEE APEC, 2004, vol. 2, pp. 984-990.
[48]C. M. Huang, T. J. Liang, R. L. Lin, and J. F. Chen, “A novel constant power control circuit for HID electronic ballast,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 854-862, May 2007.
[49]F. J. Azcondo, C. Branas, R. Casanueva, and S. Bracho, “Power-mode-controlled power-factor corrector for electronic ballast,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 56-65, Feb. 2005.
[50]R. L. Lin and Y. D. Lee, “Constant power control based self-oscillating electronic ballast,” Proc. IEEE APEC, 2005, vol. 1, pp. 589-595.
[51]S. T. Chen and L. L. Lee, “Optimized design of the electronic ballast for metal halide lamps,” Proc. IEEE APEC, 2004, vol. 2, pp. 991-996.
[52]J. Xu, M. Chen, T. Zhang, and Z. Qian, “A constant power control strategy of electronic ballast for HID lamp,” Proc. IEEE IAS, 2006, vol. 3, pp. 1099-1102.
[53]Y. Yang, Z. Qian, and X. Wu, “A novel single-stage low-frequency square-wave electronic ballast for low-wattage HID lamps,” Proc. IEEE APEC, 2005, vol. 5, pp. 1048-1052.
[54]T. Bandeira Marchesan, M. Cervi, A. Campos, and R. Nederson do Prado, “A family of electronic ballasts integrating power factor correction and power control stages to supply HPS lamps,” Proc. IEEE IAS, 2006, vol. 3, pp. 1107-1112.
[55]M. A. D. Costa, J. M. Alonso, J. Garcia, J. Cardesin, and M. Rico-Secades, “A novel low-cost electronic ballast to supply metal halide lamps,” Proc. IEEE IAS, 2005, vol. 2, pp. 1198-1204.
[56]T. F. Wu and Y. K. Chen, “Analysis and design of an isolated single-stage converter achieving power-factor correction and fast regulation,” IEEE Trans. Ind. Electron., vol. 46, no. 4, pp. 459-767, Aug. 1999.
[57]M. Wang and D. Xu, “Micro controller-based electronic ballast for multiple HPS lamps,” Proc. IEEE PEDS, 2005, vol. 2, pp. 844-847.
[58]M. Wang and G. Qi, “Design Micro-controller Electronic Ballast for Multiple High Press Sodium Lamps,” Proc. IEEE EPE-PEMC, 2006, pp. 1743-1746.
[59]Electromagnetic Compatibility (EMC)-Part 3: Limits-Section II: Limits for harmonic current emissions (equipment input current < 16 A per phase), IEC 61000-3-2 Document, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊