跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 14:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃裕培
研究生(外文):Yu-Pei Huang
論文名稱:壓電換能器之焦電特性應用在呼吸氣流量測及壓電特性應用在超音波自我干擾之研究
論文名稱(外文):A Study on Piezoelectric Transducer Employing Pyroelectricity to Measure Respiratory Airflow and Examining Applications of a Piezoelectric Produced Self-interference Ultrasonic Wave
指導教授:楊明興楊明興引用關係
指導教授(外文):Ming-Shing Young
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:77
中文關鍵詞:壓電轉能器
外文關鍵詞:Piezoelectric transducer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
壓電元件含有大量具壓電特性及焦電特性的鐵磁性微晶。其中壓電特性是壓電元件的電能系統和機械能系統交互作用;而焦電特性是電能系統和熱能系統的交互作用。由於壓電元件的焦電特性對熱的反應速度比其他溫度感測元件要快,這個特性可被利用在熱流量測的應用上。另一方面,超音波量測技術的應用則是利用壓電元件的壓電特性和反壓電特性。本論文以壓電換能器的焦電特性和壓電反壓電特性分別提出相關的應用研究。
第一個壓電元件的應用研究主要是提出以壓電換能器的焦電特性來量測呼吸氣流變化,以此研究所建立的新型量測系統可簡化呼吸量測所需機構並具有高準確度。跟標準醫用的呼吸氣流速度描記器(pneumotach)比較,本研究所建立的系統在呼吸頻率量測的準確度可達98.78%。此外,本研究所建立的呼吸量測系統和標準醫用呼吸氣流速度描記器有幾乎一樣快的反應速度(在125 ms的平均呼吸氣流反應時間實驗約差4.7 ms);另一方面,跟用在溫度量測的醫用高速熱敏電阻元件比較,本研究所建立的系統比熱敏電阻系統約快25.3 ms,且有較佳的靈敏度。本研究所提出的系統具備了標準呼吸氣流速度描記器的準確度和快速反應特性,及熱敏電阻系統的簡單和低成本的優點。
第二個壓電元件的應用研究主要是為了解決壓電轉能器在超音波量測技術上,因為壓電特性所造成起振延遲誤差。本研究提出一種新型的超音波轉能器驅動波形,以自我干擾式波形來克服起振延遲影響並準確量測超音波的飛行時間(TOF),並可用來做為準確的距離量測。此新型的驅動波形結合了振幅調變和相位調變技術,並以此讓接收波形產生自我干擾和相位反轉現象。此自我干擾和相位反轉現象在超音波接收波形產生的明顯的標記,可用來準確判斷及量測超音波飛行時間及飛行距離。以本研究所建立的超音波距離量測系統,在50到500 mm的距離量測,準確度的不確定性可低於0.2 mm;此外解析度可達所採用40KHz頻率波的0.1%波長。因此,以本研究所產生的新型特殊超音波驅動法可用來解決因壓電特性所造成的延遲誤差,並具備了高準確度及高解析度的特性。此外本研究所提出的演算法可輕易在其他微處理器上實現。其他的優點還有低成本、抗雜訊及容易實現等。
Piezoelectric material consists of a large number of ferroelectric grains (crystallites), which contain both piezoelectricity and pyroelectricity. Piezoelectricity is a linear interaction between electrical and mechanical system. However, pyroelectricity is a linear interaction between electrical and thermal systems. Devices that rely on the pyroelectric property have a much faster thermal reactivity when compared to traditional thermal measurement devices. This property has been utilized for thermal mass-flow measurement applications, such as pyroelectric thermometer and pyroelectric anemometry. Additionally, the applications of the piezoelectric and converse piezoelectric effects in ultrasound measurement techniques are based on the principle that a piezoelectric element deforms periodically in an alternating electric field. This deformation constitutes an electromechanical piezoelectric converter. This dissertation presents two separate studies examining the applications of a piezoelectric transducer’s pyroelectric and piezoelectric properties, respectively.
The first study discussed in this dissertation proposes using the pyroelectric properties of a piezoelectric transducer to sense respiratory airflow fluctuations. The proposed system offers a novel and simplified respiratory measurement mechanism. Using the pneumotach system as a benchmark, the proposed system’s respiratory rate measurement accuracy is approximately 98.78%. Moreover, the proposed system and the selected pneumotach have almost the same rapid response time to respiratory airflow (approximately 4.7 ms lag time in the 125 ms average air flow travel time experiment). When compared to a temperature measurement thermistor system, the thermistor on average is approximately 25.3 ms slower than the proposed system and has a better frequency response to respiratory airflow. The proposed system combines the accuracy and rapid response time of a commercial pneumotach system with the convenience and affordability of a thermistor system.
The second study discussed in this dissertation proposes using a time-of-flight (TOF) distance measurement by employing a piezoelectric and converse piezoelectric produced self-interference ultrasonic wave. When using TOF techniques for ultrasonic distance measurement, the system error is primarily due to the inertia delay phenomenon of machine vibration. This dissertation proposes a novel driving algorithm for an ultrasonic transmitter. The proposed ultrasonic driving algorithm combines both amplitude-modulation (AM) and phase-modulation (PM) waves. The modulated waves cause the self-interference phenomenon in the echo waves, and therefore identify the specific pulses for ultrasonic time-of-flight measurement. The standard uncertainty of the proposed distance measurement system is found to be 0.2 mm at a range of 50 to 500 mm. Additionally, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40 kHz frequency of the ultrasonic wave. As a result, using the specific ultrasonic pulses, the proposed system demonstrates accurate distance measurement results with high resolution. Additionally, the proposed driving algorithm benefits from noise resistance and ease of implementation. The algorithm is simple and can be easily adapted for other micro-processors. The main advantages of this APESW waveform system are high resolution measurement, low cost, narrow bandwidth requirement, and ease of implementation.
ABSTRACT (Chinese) I
ABSTRACT III
ACKNOWLEDGEMENTS VI
CONTENT VII
LIST OF TABLES IX
LIST OF FIGURES X
Chapter 1 INTRODUCTION 1
1.1 Background 1
1.1.1 Interaction Processes between Piezoelectric Sensor’s Electrical, Mechanical, and Thermal Systems 1
1.1.2 A Brief History of the Pyroelectric Effect and Applications for Thermal Flow Sensing 4
1.1.3 A Brief History of the Piezoelectric Effect and Applications for Ultrasonic Wave 6
1.2 Motivation 8
1.2.1 Respiratory Airflow Measurement 8
1.2.2 Ultrasonic Distance Measurement 11
1.3 Organization of the Dissertation 17
Chapter 2 METHODOLOGY 19
2.1 Respiratory Airflow Measurement Using the Pyroelectric Effect 19
2.1.1 Piezoelectric Transducer Response to Respiratory Airflow 19
2.1.2 Pyroelectric Effect Dominance 22
2.2 Piezoelectric Effect Produced Self-Interference Ultrasonic Wave 24
2.2.1 Ultrasonically Transmitted Signal and Received Signal’s Algorithm 24
2.2.2 TOF and Distance Computations 31
2.2.3 Estimation of Uncertainty 35
Chapter 3 SYSTEM IMPLEMENTATION AND EVALUATION 37
3.1 Respiratory Airflow Monitoring System 37
3.1.1 Evaluation of the Pyroelectric Effect’s Overwhelming Significance 37
3.1.2 Respiratory Monitoring System Experimental Setup 38
3.1.3 Experimental Accuracy and Response Time Compared to a Pneumotach System 44
3.1.4 Experimental Response Time Compared to a Thermistor System 51
3.2 Ultrasonic Distance Measurement System 53
3.2.1 Hardware Description 53
3.2.2 Software Description 58
3.2.3 Experimental Setup 59
3.2.4 Experimental Results 61
Chapter 4 DISCUSSION 65
Chapter 5 CONCLUSIONS AND FUTURE DEVELOPMENT 68
5.1 Conclusions 68
5.2 Recommendations for Future Research and Development 69
REFERENCES 72
VITA 76
PUBLICATION LIST 77
[1]S.B. Lang, Sourcebook of Pyroelectricity, Gordon and Breach, New York, 1974.
[2]T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, New York, 1990.
[3]R.V. Dietrich, The Tourmaline Group, Van Nostrand Reinhold Company Inc., New York, 1985.
[4]G. Gautschi, Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers, Springer, Berlin, 2002.
[5]H.Y. Hsieh, H.H. Bau, and J.N. Zemel, “Pyroelectric anemometry: Theory of operation,” Sens. Actuator A-Phys., vol. 49, (no. 3), pp. 125-132, 1995.
[6]P. Hesketh, B. Gebhart, and J.N. Zemel, “Heat transfer model for the pyroelectric anemometer,” vol. 57, (no. 11), pp. 4944-4949, 1985.
[7]A.M. Cyna, V. Kulkarni, M.E. Tunstall, J.M.S. Hutchison, and J.R. Mallard, “Aura - a new respiratory monitor and apnea alarm for spontaneously breathing patients,” Br. J. Anaesth., vol. 67, (no. 3), pp. 341-345, 1991.
[8]M. Folke, L. Cernerud, M. Ekstrom, and B. Hok, “Critical review of non-invasive respiratory monitoring in medical care,” Med. Biol. Eng. Comput., vol. 41, (no. 4), pp. 377-383, 2003.
[9]K.P. Cohen, W.M. Ladd, D.M. Beams, W.S. Sheers, R.G. Radwin, W.J. Tompkins, and J.G. Webster, “Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction,” Biomedical Engineering, IEEE Transactions on, vol. 44, (no. 7), pp. 555-566, 1997.
[10]B.W. Carlson, V.J. Neelon, and H. Hsiao, “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects,” Physiol. Meas., vol. 20, (no. 1), pp. 53-63, 1999.
[11]L. Nilsson, A. Johansson, and S. Kalman, “Respiration can be monitored by photoplethysmography with high sensitivity and specificity regardless of anaesthesia and ventilatory mode,” Acta Anaesthesiol. Scand., vol. 49, (no. 8), pp. 1157-1162, 2005.
[12]J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas., vol. 28, (no. 3), pp. R1-R39, 2007.
[13]S. Zlochiver, M. Arad, M.M. Radai, D. Barak-Shinar, H. Krief, T. Engelman, R. Ben-Yehuda, A. Adunsky, and S. Abboud, “A portable bio-impedance system for monitoring lung resistivity,” Medical Engineering & Physics, vol. 29, (no. 1), pp. 93-100, 2007.
[14]M. Vegfors, H. Ugnell, B. Hok, P.A. Oberg, and C. Lennmarken, “Experimental evaluation of 2 new sensors for respiratory rate monitoring,” Physiol. Meas., vol. 14, (no. 2), pp. 171-181, 1993.
[15]A.O. Soubani, “Noninvasive monitoring of oxygen and carbon dioxide,” Am. J. Emerg. Med., vol. 19, (no. 2), pp. 141-146, 2001.
[16]C. O'Brien and C. Heneghan, “A comparison of algorithms for estimation of a respiratory signal from the surface electrocardiogram,” Computers in Biology and Medicine, vol. 37, (no. 3), pp. 305-314, 2007.
[17]D. Barschdorff and Z. Wei, “Respiratory rhythm detection with photoplethysmographic methods,” in Proc. Conference Name, pp. 912-913 vol.2, 1994.
[18]A. Al-Salaymeh, J. Jovanovic, and F. Durst, “Bi-directional flow sensor with a wide dynamic range for medical applications,” Med. Eng. Phys., vol. 26, (no. 8), pp. 623-637, 2004.
[19]P. Hult, B. Wranne, and P. Ask, “A bioacoustic method for timing of the different phases of the breathing cycle and monitoring of breathing frequency,” Medical Engineering & Physics, vol. 22, (no. 6), pp. 425-433, 2000.
[20]B. Hok, A. Bluckert, and G. Sandberg, “A non-contacting sensor system for respiratory air flow detection,” Sens. Actuator A-Phys., vol. 52, (no. 1-3), pp. 81-85, 1996.
[21]C. Larsson and P. Staun, “Evaluation of a new fibre-optical monitor for respiratory rate monitoring,” J. Clin. Monitor. Comp., vol. 15, (no. 5), pp. 295-298, 1999.
[22]G. Lenz, W. Heipertz, and E. Epple, “Capnometry for continuous postoperative monitoring of nonintubated, spontaneously breathing patients,” J. Clin. Monitor. Comp., vol. 7, (no. 3), pp. 245-248, 1991.
[23]G.R. Feaster, B.F. Kimler, S.D. Henderson, and C.M. Mansfield, “Simple plethysmograph for measuring respiration rates in rats with lung damage,” Rev. Sci. Instrum., vol. 55, (no. 7), pp. 1058-1060, 1984.
[24]J.A. de Mesquita and P.L. de Melo, “Respiratory monitoring system based on the nasal pressure technique for the analysis of sleep breathing disorders: Reduction of static and dynamic errors, and comparisons with thermistors and pneumotachographs,” Rev. Sci. Instrum., vol. 75, (no. 3), pp. 760-767, 2004.
[25]M. Kohler, R. Thurnheer, and K.E. Bloch, “Non-invasive, side-selective nasal airflow monitoring,” Physiol. Meas., vol. 26, (no. 1), pp. 69-82, 2005.
[26]P. Hult, T. Fjallbrant, S. Dahle, P. Danielsson, and P. Ask, “A method for respiration monitoring by the use of a bioacoustic signal,” IEE Conference Publication, (no. 476), pp. 22-25, 2000.
[27]P.L. de Melo and L.N.D. Lemes, “Instrumentation for the analysis of respiratory system disorders during sleep: Design and application,” Rev. Sci. Instrum., vol. 73, (no. 11), pp. 3926-3932, 2002.
[28]A.C. Jackson and A. Vinegar, “Technique for measuring frequency-response of pressure, volume, and flow transducers,” J. Appl. Physiol., vol. 47, (no. 2), pp. 462-467, 1979.
[29]K. Storck, M. Karlsson, P. Ask, and D. Loyd, “Heat transfer evaluation of the nasal thermistor technique,” Biomedical Engineering, IEEE Transactions on, vol. 43, (no. 12), pp. 1187-1191, 1996.
[30]R. Farre, J.M. Montserrat, M. Rotger, E. Ballester, and D. Navajas, “Accuracy of thermistors and thermocouples as flow-measuring devices for detecting hypopnoeas,” Eur. Resp. J., vol. 11, (no. 1), pp. 179-182, 1998.
[31]D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini, and A. Taroni, “Digital time-of-flight measurement for ultrasonic sensors,” IEEE Trans. Instrum. Meas., vol. 41, (no. 1), pp. 93-97, 1992.
[32]M. Parrilla, J.J. Anaya, and C. Fritsch, “Digital signal-processing techniques for high-accuracy ultrasonic range measurements,” IEEE Trans. Instrum. Meas., vol. 40, (no. 4), pp. 759-763, 1991.
[33]G. Tardajos, G.G. Gaitano, and F.R.M. Deespinosa, “Accurate, sensitive, and fully-automatic method to measure sound-velocity and attenuation,” Rev. Sci. Instrum., vol. 65, (no. 9), pp. 2933-2938, 1994.
[34]M.S. Young and Y.C. Li, “A high-precision ultrasonic system for vibration measurements,” Rev. Sci. Instrum., vol. 63, (no. 11), pp. 5435-5441, 1992.
[35]F. Figueroa and E. Barbieri, “An ultrasonic ranging system for structural vibration measurements,” IEEE Trans. Instrum. Meas., vol. 40, (no. 4), pp. 764-769, 1991.
[36]G.S.K. Wong and T.F.W. Embleton, “Variation of the speed of sound in air with humidity and temperature,” The Journal of the Acoustical Society of America, vol. 77, (no. 5), pp. 1710-1712, 1985.
[37]F.E. Gueuning, M. Varlan, C.E. Eugene, and P. Dupuis, “Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods,” IEEE Trans. Instrum. Meas., vol. 46, (no. 6), pp. 1236-1240, 1997.
[38]C.F. Huang, M.S. Young, and Y.C. Li, “Multiple-frequency continuous wave ultrasonic system for accurate distance measurement,” Rev. Sci. Instrum., vol. 70, (no. 2), pp. 1452-1458, 1999.
[39]M. Yang, S.L. Hill, and J.O. Gray, “A multifrequency AM-based ultrasonic system for accuracy distance measurement,” IEEE Trans. Instrum. Meas., vol. 43, (no. 6), pp. 861-866, 1994.
[40]D. Webster, “A pulsed ultrasonic distance measurement system based upon phase digitizing,” IEEE Trans. Instrum. Meas., vol. 43, (no. 4), pp. 578-582, 1994.
[41]C. Canhui and P.P.L. Regtien, “Accurate digital time-of-flight measurement using self-interference,” Instrumentation and Measurement, IEEE Transactions on, vol. 42, (no. 6), pp. 990-994, 1993.
[42]K.N. Huang, C.F. Huang, Y.C. Li, and M.S. Young, “High precision, fast ultrasonic thermometer based on measurement of the speed of sound in air,” Rev. Sci. Instrum., vol. 73, (no. 11), pp. 4022-4027, 2002.
[43]A. Carullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive applications,” Sensors Journal, IEEE, vol. 1, (no. 2), pp. 143-147, 2001.
[44]R. Lakes, “Shape-dependent damping in piezoelectric solids,” Sonics and Ultrasonics, IEEE Transactions on, vol. 27, (no. 4), pp. 208-213, 1980.
[45]B. Massey, Mechanics of Fluids, Taylor & Francis, 2006.
[46]R. Farre, J. Rigau, J.M. Montserrat, E. Ballester, and D. Navajas, “Relevance of linearizing nasal prongs for assessing hypopneas and flow limitation during sleep,” Am. J. Respir. Crit. Care Med., vol. 163, (no. 2), pp. 494-497, 2001.
[47]A.C. Guyton and J.E. Hall, Textbook of Medical Physiology, Saunders, Philedelphia, 2001.
[48]S.S. Huang, C.F. Huang, K.N. Huang, and M.S. Young, “A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detection,” Rev. Sci. Instrum., vol. 73, (no. 10), pp. 3671-3677, 2002.
[49]D.A. Bohn, “Environmental effects on the speed of sound,” Journal of the Audio Engineering Society, vol. 36, (no. 4), pp. 223-231, 1988.
[50]J.G. Webster, Encyclopedia of Medical Devices and Instrumentation, Wiley-Interscience, New York, 2006.
[51]R. Murthy and I. Pavlidis, “Noncontact measurement of breathing function,” IEEE Engineering in Medicine and Biology Magazine, vol. 25, (no. 3), pp. 57-67, 2006.
[52]J.M. Bland and D.G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet, vol. 1, (no. 8476), pp. 307-10, 1986.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top